高中数学(人教版A版必修一)配套课件:第三章 函数的应用 3.2.2.pptx
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《高中数学(人教版A版必修一)配套课件:第三章 函数的应用 3.2.2.pptx》由用户(金钥匙文档)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 高中数学人教版A版必修一配套课件:第三章 函数的应用 3.2.2 高中数学 人教版 必修 配套 课件 第三 函数 应用 3.2 下载 _人教A版_数学_高中
- 资源描述:
-
1、3.2.2 函数模型的应用实例 第三章 3.2 函数的模型及其应用 1.能利用已知函数模型求解实际问题; 2.能自建确定性函数模型解决实际问题; 3.了解建立拟合函数模型的步骤,并了解检验和调整的必要性. 问题导学 题型探究 达标检测 学习目标 问题导学 新知探究 点点落实 知识点一 几类已知函数模型 思考 指数型函数与指数函数在解析式上有什么不同? 答案 答案 指数函数yax(a0,a1)的系数为1,且没有常数项.确定一个 指数函数解析式只需要一个条件;指数型函数模型f(x)baxc(a,b, c为常数,b0,a0且a1)指数式前的系数不一定是1,而且可能还 有常数项.所以确定指数型函数通常
2、需要3个条件. 几类函数模型: 答案 函数模型 函数解析式 一次函数模型 f(x) 反比例函数模型 f(x) b(k,b为常数且k0) 二次函数模型 f(x) 指数型函数模型 f(x) 对数型函数模型 f (x)blogaxc(a,b,c为常数,b0,a0且 a1) 幂函数型模型 f(x) k x axb(a、b为常数,a0) ax2bxc(a,b,c为常数,a0) baxc(a,b,c为常数,b0,a0 且a1) axnb(a,b为常数,a0) 知识点二 自建函数模型 思考 数据拟合时,得到的函数为什么要检验? 答案 答案 因为限于我们的认识水平和一些未知因素的影响,现实可能与 我们所估计的
3、函数有误差或甚至不切合客观实际,此时就要检验,调 整模型或改选其他函数模型. 面临实际问题,自己建立函数模型的步骤: (1)收集数据; (2)画散点图; (3)选择函数模型; (4)求函数模型; (5)检验; (6)用函数模型解释实际问题. 返回 2 h 内火车行驶的路程 S13120(210 60)233 (km). 题型探究 重点难点 个个击破 类型一 利用已知函数模型求解实际问题 例1 某列火车从北京西站开往石家庄,全程277 km.火车出发10 min开 出13 km后,以120 km/h的速度匀速行驶.试写出火车行驶的总路程S与 匀速行驶的时间t之间的关系,并求火车离开北京2 h内行
4、驶的路程. 解 因为火车匀速运动的时间为(27713) 120 11 5 (h),所以 0t11 5 . 因为火车匀速行驶时间 t h 所行驶路程为 120t,所以,火车运行总路程 S 与匀速行驶时间 t 之间的关系是 S13120t(0t11 5 ). 反思与感悟 解析答案 解析答案 跟踪训练1 商店出售茶壶与茶杯,茶壶每个定价20元,茶杯每个5元, 该商店推出两种优惠办法: 买一个茶壶送一个茶杯,按购买总价的92%付款.某顾客购买茶壶4 个,茶杯若干个(不少于4个),若购买茶杯数x个,付款为y(元),试分 别建立两种优惠办法中 y与x的函数关系式,并指出如果该顾客需要购买茶杯40个,应选择
5、哪 种优惠办法? 类型二 自建确定性函数模型解决实际问题 例 2 某化工厂引进一条先进生产线生产某种化工产品, 其生产的总成本 y(万元)与年产量 x(吨)之间的函数关系式可以近似地表示为 yx 2 5 48x 8 000,已知此生产线年产量最大为 210 吨.若每吨产品平均出厂价为 40 万元, 那么当年产量为多少吨时, 可以获得最大利润?最大利润是多少? 解析答案 反思与感悟 解析答案 跟踪训练 2 有甲、乙两种商品,经营销售这两种商品所获得的利润依次 为 Q1万元和 Q2万元,它们与投入的资金 x 万元的关系是 Q11 5x,Q2 3 5 x.现有 3 万元资金投入使用,则对甲、乙两种商
展开阅读全文