书签 分享 收藏 举报 版权申诉 / 38
上传文档赚钱

类型CIS-541-–-Numerical-Methods--Department-of-Computer-:顺541–数值方法-计算机系-资料课件.ppt

  • 上传人(卖家):ziliao2023
  • 文档编号:7336875
  • 上传时间:2023-11-29
  • 格式:PPT
  • 页数:38
  • 大小:499.50KB
  • 【下载声明】
    1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
    2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
    3. 本页资料《CIS-541-–-Numerical-Methods--Department-of-Computer-:顺541–数值方法-计算机系-资料课件.ppt》由用户(ziliao2023)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
    4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
    5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
    配套讲稿:

    如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。

    特殊限制:

    部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。

    关 键  词:
    CIS 541 Numerical Methods Department of Computer 数值 方法 计算机系 资料 课件
    资源描述:

    1、CSE 541-DifferentiationRoger CrawfisAugust 17,2023OSU/CIS 5412Numerical Differentiation The mathematical definition:Can also be thought of as the tangent line.0()()()limhf xhf xfxhxx+hAugust 17,2023OSU/CIS 5413Numerical Differentiation We can not calculate the limit as h goes to zero,so we need to a

    2、pproximate it.Apply directly for a non-zero h leads to the slope of the secant curve.xx+hAugust 17,2023OSU/CIS 5414Numerical Differentiation This is called Forward Differences and can be derived using Taylors Series:22()()()()2!()()()()2!()()()()2!()()()0hf xhf xfx hfhf xhf xfx hff xhf xhfxfhf xhf x

    3、fx as hhTheoretically speakingAugust 17,2023OSU/CIS 5415Truncation Errors Let f(x)=a+e,and f(x+h)=a+f.Then,as h approaches zero,ea and fa.With limited precision on our computer,our representation of f(x)a f(x+h).We can easily get a random round-off bit as the most significant digit in the subtractio

    4、n.Dividing by h,leads to a very wrong answer for f(x).August 17,2023OSU/CIS 5416Error TradeoffUsing a smaller step size reduces truncation error.However,it increases the round-off error.Trade off/diminishing returns occurs:Always think and test!Log errorLog step sizeTruncation errorRound off errorTo

    5、tal errorPoint of diminishingreturnsAugust 17,2023OSU/CIS 5417Numerical Differentiation This formula favors(or biases towards)the right-hand side of the curve.Why not use the left?xx+hx-hAugust 17,2023OSU/CIS 5418Numerical Differentiation This leads to the Backward Differences formula.2()()()()2!()(

    6、)()()2!()()()0hf xhf xfx hff xf xhhfxfhf xf xhfx as hhAugust 17,2023OSU/CIS 5419Numerical Differentiation Can we do better?Lets average the two:This is called the Central Difference formula.1()()()()()()()22f xhf xf xf xhf xhf xhfxhhhForward difference Backward differenceAugust 17,2023OSU/CIS 54110C

    7、entral Differences This formula does not seem very good.It does not follow the calculus formula.It takes the slope of the secant with width 2h.The actual point we are interested in is not even evaluated.xx+hx-hAugust 17,2023OSU/CIS 54111Numerical Differentiation Is this any better?Lets use Taylors S

    8、eries to examine the error:232333()()()()()23!()()()()()23!()()2()()()3!3!hhf xhf xfx hfxfhhf xhf xfx hfxfsubtractinghhf xhf xhfx hffAugust 17,2023OSU/CIS 54112Central Differences The central differences formula has much better convergence.Approaches the derivative as h2 goes to zero!2()()1()(),26f

    9、xhf xhfxfhxh xhh2()()()2f xhf xhfxO hhAugust 17,2023OSU/CIS 54113Warning Still have truncation error problem.Consider the case of:Build a table withsmaller values of h.What about largevalues of h for thisfunction?()100100100()21,0.000333,60.01000330.0099966()0.0100500.000666666Relative error:0.01-0.

    10、0100500.5%0.01xf xxhxhfxhat xhwith significantdigitsfxAugust 17,2023OSU/CIS 54114Richardson Extrapolation Can we do better?Is my choice of h a good one?Lets subtract the two Taylor Series expansions again:2345452345455533()()()()()()()23!4!5!()()()()()()()23!4!5!()()()()2()222()3!3!5!hhhhf xhf xfx h

    11、fxfxfxfxhhhhf xhf xfx hfxffxfxsubtractingfxfxhf xhf xhfx hhhfxAugust 17,2023OSU/CIS 54115Richardson Extrapolation Assuming the higher derivatives exist,we can hold x fixed(which also fixes the values of f(x),to obtain the following formula.Richardson Extrapolation examines the operator below as a fu

    12、nction of h.2462461()()()2fxf xhf xha ha ha hh1()()()2hf xhf xhhAugust 17,2023OSU/CIS 54116Richardson Extrapolation This function approximates f(x)to O(h2)as we saw earlier.Lets look at the operator as h goes to zero.246246246246()()()()2222hfxa ha ha hhhhhfxaaaSame leading constantsAugust 17,2023OS

    13、U/CIS 54117Richardson Extrapolation Using these two formulas,we can come up with another estimate for the derivative that cancels out the h2 terms.46464315()4()3()24161()()()()232hhfxa ha horhhfxhO h new estimatedifference between old and new estimatesExtrapolates by assuming the new estimate unders

    14、hot.August 17,2023OSU/CIS 54118Richardson Extrapolation If h is small(h1),then h4 goes to zero much faster than h2.Cool!Can we cancel out the h6 term?Yes,by using h/4 to estimate the derivative.August 17,2023OSU/CIS 54119Richardson Extrapolation Consider the following property:where L is unknown,as

    15、are the coefficients,a2k.221221()()kkkkkkhfxa hLa h 0lim()hLhfxAugust 17,2023OSU/CIS 54120Richardson Extrapolation Do not forget the formal definition is simply the central-differences formula:New symbology(is this a word?):1()()()2hf xhf xhh21,02,02nknkhD nhLA kFrom previous slideAugust 17,2023OSU/

    16、CIS 54121Richardson Extrapolation D(n,0)is just the central differences operator for different values of h.Okay,so we proceed by computing D(n,0)for several values of n.Recalling our cancellation of the h2 term.441()()()()2321(1,0)(1,0)(0,0)4 1hhfxhO hDDDO hAugust 17,2023OSU/CIS 54122Richardson Extr

    17、apolation If we let hh/2,then in general,we can write:Lets denote this operator as:41()(,0)(,0)(1,0)4 12nhfxD nD nD nO11,1(,0),01,041D nD nD nD nAugust 17,2023OSU/CIS 54123Richardson Extrapolation Now,we can formally define Richardsons extrapolation operator as:or41,(,1)1,1,14141mmmD n mD n mD nmmnn

    18、ew estimateold estimate1,(,1),11,141mD n mD n mD n mD nmAugust 17,2023OSU/CIS 54124Richardson Extrapolation Now,we can formally define Richardsons extrapolation operator as:Memorize me!1,(,1),11,141mD n mD n mD n mD nmAugust 17,2023OSU/CIS 54125Richardson Extrapolation Theorem These terms approach f

    19、(x)very quickly.21,2knk mhD n mLA k mOrder starts much higher!August 17,2023OSU/CIS 54126Richardson Extrapolation Since m n,this leads to a two-dimensional triangular array of values as follows:We must pick an initial value of h and a max iteration value N.0,01,01,12,02,12,2,0,1,2,DDDDDDD ND ND ND N

    20、 NAugust 17,2023OSU/CIS 54127Example523cos(100()11.3,1280,016.6963861,040.5833932,0109.3225283,0135.0317474,0142.0686155,0143.866937xf xxxhDDDDDD10.002444096h August 17,2023OSU/CIS 54128Example0,016.6963861,040.5833931,148.5833932,0109.3225282,1132.2355743,0135.0317473,1143.6014874,0142.0686154,1144

    21、.4142385,0143.8669375,1144.466377DDDDDDDDDDD13extrapolateAugust 17,2023OSU/CIS 54129Example0,016.6963861,040.5833931,148.5833932,0109.3225282,1132.2355742,2137.8148973,0135.0317473,1143.6014873,2144.3592144,0142.0686154,1144.4142384,2144.4684215,0143.8669375,1144DDDDDDDDDDDDDD.4663775,2144.469853D11

    22、5extrapolateAugust 17,2023OSU/CIS 54130Example Which converges up to eight decimal places.Is it accurate?16.69638640.58339348.583393109.322528132.235574137.814897135.031747143.601487144.359214144.463092142.068615144.414238144.468421144.470154144.470182143.866937144.466377144.469853144.469876144.4698

    23、755,D5144.46987511023extrapolate1255extrapolate163extrapolate115extrapolate13extrapolateAugust 17,2023OSU/CIS 54131Example We can look at the(theoretical)error term on this example.Taking the derivative:255 1122575,5,5211.3(6,5),540962kkkkhDLA khfAA k 2-144(1.3)144.469874253f Round-off errorAugust 1

    24、7,2023OSU/CIS 54132Second Derivatives What if we need the second derivative?Any guesses?234545234545()()()()()()()23!4!5!()()()()()()()23!4!5!hhhhf xhf xfx hfxfxfxfxhhhhf xhf xfx hfxffxfxAugust 17,2023OSU/CIS 54133Second Derivatives Lets cancel out the odd derivatives and double up the even ones:Imp

    25、lies adding the terms together.244()()2()2()2()24!hhf xhf xhf xfxfxAugust 17,2023OSU/CIS 54134Second Derivatives Isolating the second derivative term yields:With an error term of:2()2()()()f xhf xf xhfxh 42112Eh f August 17,2023OSU/CIS 54135Partial Derivatives Remember:Nothing special about partial derivatives:,2,2f xh yf xh yfx yxhf x yhf x yhfx yyhAugust 17,2023OSU/CIS 54136Calculating the Gradient For lab 2,you need to calculate the gradient.Just use central differences for each partial derivative.Remember to normalize it(divide by its length).谢谢你的阅读v知识就是财富v丰富你的人生 Thank you

    展开阅读全文
    提示  163文库所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
    关于本文
    本文标题:CIS-541-–-Numerical-Methods--Department-of-Computer-:顺541–数值方法-计算机系-资料课件.ppt
    链接地址:https://www.163wenku.com/p-7336875.html

    Copyright@ 2017-2037 Www.163WenKu.Com  网站版权所有  |  资源地图   
    IPC备案号:蜀ICP备2021032737号  | 川公网安备 51099002000191号


    侵权投诉QQ:3464097650  资料上传QQ:3464097650
       


    【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。

    163文库