《管理运筹学》第11章-图与网络模型企业经营管理推荐课件.ppt
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《《管理运筹学》第11章-图与网络模型企业经营管理推荐课件.ppt》由用户(ziliao2023)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 管理运筹学 管理 运筹学 11 网络 模型 企业 经营管理 推荐 课件
- 资源描述:
-
1、管 理 运 筹 学1 第十一章图与网络模型1图与网络的基本概念2最短路问题3最小生成树问题4最大流问题5最小费用最大流问题管 理 运 筹 学21图与网络的基本概念 图论中图是由点和边构成,可以反映一些对象之间的关系。例如:在一个人群中,对相互认识这个关系我们可以用图来表示,图11-1就是一个表示这种关系的图。(v1)赵(v2)钱(v3)孙(v4)李(v5)周(v6)吴(v7)陈e2e1e3e4e5图11-1管 理 运 筹 学3 1图与网络的基本概念 当然图论不仅仅是要描述对象之间关系,还要研究特定关系之间的内在规律,一般情况下图中点的相对位置如何、点与点之间联线的长短曲直,对于反映对象之间的关
2、系并不是重要的,如对赵等七人的相互认识关系我们也可以用图11-2来表示,可见图论中的图与几何图、工程图是不一样的。(v1)赵(v2)钱孙(v3)李(v4)周(v5)吴(v6)陈(v7)e2e1e3e4e5图11-2管 理 运 筹 学41图与网络的基本概念a1a2a3a4a14a7a8a9a6a5a10a12a11a13a15(v1)赵(v2)钱(v3)孙(v4)李(v5)周(v6)吴(v7)陈图11-3 如果我们把上面例子中的“相互认识”关系改为“认识”的关系,那么只用两点之间的联线就很难刻画他们之间的关系了,这是我们引入一个带箭头的联线,称为弧。图11-3就是一个反映这七人“认识”关系的图。
3、相互认识用两条反向的弧表示。管 理 运 筹 学5 1图与网络的基本概念无向图:由点和边构成的图,记作G=(V,E)。有向图:由点和弧构成的图,记作D=(V,A)。连通图:对无向图G,若任何两个不同的点之间,至少存在一条链,则G为连通图。回路:若路的第一个点和最后一个点相同,则该路为回路。赋权图:对一个无向图G的每一条边(vi,vj),相应地有一个数wij,则称图G为赋权图,wij称为边(vi,vj)上的权。网络:在赋权的有向图D中指定一点,称为发点,指定另一点称为收点,其它点称为中间点,并把D中的每一条弧的赋权数称为弧的容量,D就称为网络。管 理 运 筹 学62最短路问题最短路问题:对一个赋权
4、的有向图D中的指定的两个点Vs和Vt找到一条从 Vs 到 Vt 的路,使得这条路上所有弧的权数的总和最小,这条路被称之为从Vs到Vt的最短路。这条路上所有弧的权数的总和被称为从Vs到Vt的距离。一、求解最短路的Dijkstra算法(双标号法)步骤:1.给出点V1以标号(0,s)2.找出已标号的点的集合I,没标号的点的集合J以及弧的集合3.如果上述弧的集合是空集,则计算结束。如果vt已标号(lt,kt),则 vs到vt的距离为lt,而从 vs到vt的最短路径,则可以从kt 反向追踪到起点vs 而得到。如果vt 未标号,则可以断言不存在从 vs到vt的有向路。如果上述的弧的集合不是空集,则转下一步
5、。4.对上述弧的集合中的每一条弧,计算 sij=li+cij。在所有的 sij中,找到其值为最小的弧。不妨设此弧为(Vc,Vd),则给此弧的终点以双标号(scd,c),返回步骤2。(,)|,ijijv vvI vJ管 理 运 筹 学72最短路问题 例1 求下图中v1到v6的最短路解:采用Dijkstra算法,可解得最短路径为v1 v3 v4 v6 各点的标号图如下:v23527531512v1v6v5v3v4(3,1)v23527531512 V1(0,s)v5(8,4)v6(2,1)v3(3,3)v4管 理 运 筹 学82最短路问题 例2 电信公司准备在甲、乙两地沿路架设一条光缆线,问如何架
6、设使其光缆线路最短?下图给出了甲乙两地间的交通图。权数表示两地间公路的长度(单位:公里)。解:这是一个求无向图的最短路的问题。可以把无向图的每一边(vi,vj)都用方向相反的两条弧(vi,vj)和(vj,vi)代替,就化为有向图,即可用Dijkstra算法来求解。也可直接在无向图中用Dijkstra算法来求解。只要在算法中把从已标号的点到未标号的点的弧的集合改成已标号的点到未标号的点的边的集合即可。V1(甲地)151762444 31065v2V7(乙地)v3v4v5v6管 理 运 筹 学92最短路问题例2最终解得:最短路径v1 v3 v5 v6 v7,每点的标号见下图(0,s)V1(甲地)1
7、517624431065(13,3)v2 (22,6)V7(乙地)V5(14,3)V6(16,5)V3(10,1)V4(18,5)管 理 运 筹 学102最短路问题 例3 设备更新问题。某公司使用一台设备,在每年年初,公司就要决定是购买新的设备还是继续使用旧设备。如果购置新设备,就要支付一定的购置费,当然新设备的维修费用就低。如果继续使用旧设备,可以省去购置费,但维修费用就高了。请设计一个五年之内的更新设备的计划,使得五年内购置费用和维修费用总的支付费用最小。已知:设备每年年初的价格表 设备维修费如下表年份年份12345年初价格年初价格1111121213使用年数使用年数0-11-22-33-
8、44-5每年维修每年维修费用费用5681118管 理 运 筹 学112最短路问题例3的解:将问题转化为最短路问题,如下图:用vi表示“第i年年初购进一台新设备”,弧(vi,vj)表示第i年年初购进的设备一直使用到第j年年初。把所有弧的权数计算如下表:v1v2v3v4v5v6123456116223041592162230413172331417235186管 理 运 筹 学122最短路问题(继上页)把权数赋到图中,再用Dijkstra算法求最短路。最终得到下图,可知,v1到v6的距离是53,最短路径有两条:v1 v3 v6和 v1 v4 v6v1v2v3v4v5v616223041591622
9、3041312317181723 V1(0,s)v3v4(41,1)v5v62230415916(22,1)3041312317181723 V2(16,1)16(30,1)(53,3)(53,4)管 理 运 筹 学133最小生成树问题树是图论中的重要概念,所谓树就是一个无圈的连通图。图11-11中,(a)就是一个树,而(b)因为图中有圈所以就不是树,(c)因为不连通所以也不是树。图11-11v1v2v3v4v5v6v7v8v9v1v2v3v5v8v7v6v4v1v2v3v4v5v7v6v8v9(a)(b)(c)管 理 运 筹 学143最小生成树问题 给了一个无向图G=(V,E),我们保留G的
10、所有点,而删掉部分G的边或者说保留一部分G的边,所获得的图G,称之为G的生成子图。在图11-12中,(b)和(c)都是(a)的生成子图。如果图G的一个生成子图还是一个树,则称这个生成子图为生成树,在图11-12中,(c)就是(a)的生成树。最小生成树问题就是指在一个赋权的连通的无向图G中找出一个生成树,并使得这个生成树的所有边的权数之和为最小。图11-12(a)(b)(c)管 理 运 筹 学153最小生成树问题一、求解最小生成树的破圈算法算法的步骤:1、在给定的赋权的连通图上任找一个圈。2、在所找的圈中去掉一个权数最大的边(如果有两条或两条以上的边都是权数最大的边,则任意去掉其中一条)。3、如
11、果所余下的图已不包含圈,则计算结束,所余下的图即为最小生成树,否则返回第1步。管 理 运 筹 学163最小生成树问题例4 用破圈算法求图(a)中的一个最小生成树v1331728541034v7v6v5v4v2v13317285434v7v6v5v4v2v133725434v7v6v5v4v2v3v3v31v13372434v7v6v5v4v2v31v1337234v7v6v5v4v2v31v133723v7v6v5v4v2v31(a)(b)(c)(d)(e)(f)图11-13管 理 运 筹 学173最小生成树问题 例5、某大学准备对其所属的7个学院办公室计算机联网,这个网络的可能联通的途径如下
12、图,图中v1,v7 表示7个学院办公室,请设计一个网络能联通7个学院办公室,并使总的线路长度为最短。解:此问题实际上是求图11-14的最小生成树,这在例4中已经求得,也即按照图11-13的(f)设计,可使此网络的总的线路长度为最短,为19百米。“管理运筹学软件”有专门的子程序可以解决最小生成树问题。v1331728541034v7v6v5v4v2v3图11-14管 理 运 筹 学184最大流问题最大流问题:给一个带收发点的网络,其每条弧的赋权称之为容量,在不超过每条弧的容量的前提下,求出从发点到收点的最大流量。一、最大流的数学模型 例6 某石油公司拥有一个管道网络,使用这个网络可以把石油从采地
13、运送到一些销售点,这个网络的一部分如下图所示。由于管道的直径的变化,它的各段管道(vi,vj)的流量cij(容量)也是不一样的。cij的单位为万加仑/小时。如果使用这个网络系统从采地 v1向销地 v7运送石油,问每小时能运送多少加仑石油?v563522241263v1v2v7v4v3v6图11-26管 理 运 筹 学194最大流问题 我们可以为此例题建立线性规划数学模型:设弧(vi,vj)上流量为fij,网络上的总的流量为F,则有:1412232514434647234335362535573646675767471214,1,2,6;1,2,70,1,2,6;1,2,712ijijijmax
14、F=fffffffffffffffffffffffffcijfij目标函数:约束条件:管 理 运 筹 学204最大流问题 在这个线性规划模型中,其约束条件中的前6个方程表示了网络中的流量必须满足守恒条件,发点的流出量必须等于收点的总流入量;其余的点称之为中间点,它的总流入量必须等于总流出量。其后面几个约束条件表示对每一条弧(vi,vj)的流量fij要满足流量的可行条件,应小于等于弧(vi,vj)的容量cij,并大于等于零,即0fij cij。我们把满足守恒条件及流量可行条件的一组网络流 fij称之为可行流,(即线性规划的可行解),可行流中一组流量最大(也即发出点总流出量最大)的称之为最大流(即
展开阅读全文