《轴对称现象》课件-(同课异构)2022年课件.ppt
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《《轴对称现象》课件-(同课异构)2022年课件.ppt》由用户(ziliao2023)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 轴对称现象 轴对称 现象 课件 课异构 2022
- 资源描述:
-
1、教育部教育部“精英杯公开课大赛简介精英杯公开课大赛简介 2021年6月,由教育学会牵头,教材编审委员会具体组织实施,在全国8个城市,设置了12个分会场,范围从“小学至高中全系列部编新教材进行了统一的培训和指导。每次指導,都輔以精彩的優秀示範課。在這些示範課中,不乏全國名師和各省名師中的佼佼者。他们的课程,无论是在内容和形式上,都是经过认真研判,把各学科的核心素养作为教学主线。既涵盖城市中小学、又包括乡村大局部学校的教学模式。適合全國大局部教學大區。本課件就是從全國一等獎作品中,优选出的具有代表性的作品。示范性强,有很大的推广价值。1 轴对称现象导入新课讲授新课当堂练习课堂小结第五章 生活中的轴
2、对称七年级数学下BS 教学课件学习目标1在生活实例中认识轴对称图形;(重点)2分析轴对称图形,理解轴对称的概念;(重点)3通过丰富的生活实例认识轴对称,能够识别简 单的轴对称图形及其对称轴(难点)导入新课导入新课图片欣赏它们有什么共同的特点?讲授新课讲授新课轴对称和轴对称图形一 如果一个平面图形沿一条直线折叠,直线两旁的如果一个平面图形沿一条直线折叠,直线两旁的局部能够互相重合,这个图形就叫做轴对称图形,这局部能够互相重合,这个图形就叫做轴对称图形,这条直线就是它的对称轴条直线就是它的对称轴.轴对称图形对称轴am做一做以下哪些是属于轴对称图形?你能举出一些轴对称图形的例子吗?A B C D E
3、 F G H I J K L M N O P Q R S T U V W X Y Z游戏规那么:每人轮流按顺序报一个字母.如果你认为你所报的字母的形状是一个轴对称图形,你就迅速站起来报出,并说出它有几条对称轴;如果你认为你报的字母的形状不是轴对称图形,那么,你只需坐在座位上报就可以了.其他同学认真听,如果报错了,及时提醒.全班总发动A B C D E F G H I J K L M N O P Q R S T U V W X Y Z做一做:找出以下各图形中的对称轴,并说明哪一个图形的对称轴最多.想一想:下面的每对图形有什么共同特点?AABCBC对称轴对称轴 如果一个图形沿一条直线折叠折叠,如果
4、它能够与另一个图形重合,那么就说这两个图形关于这条直线对称,这条直线就是它的对称轴对称轴.例 以下四组图片中有哪几组图形成轴对称?BDCA典例精析知识要点比较归纳轴对称图形两个图形成轴对称图形区别联系一个图形具有的特殊形状两个全等图形的特殊的位置关系1.都是沿着某条直线折叠后能重合.2.可以互相转化.这是轴对称图形还是两个图形成轴对称?当堂练习当堂练习1.观察以下各种图形,判断是不是轴对称图形?2.找出下面每个轴对称图形的对称轴.3.找出下文中成轴对称的文字:一;三;个;八;十;来;苦;天;中.一叶孤舟,坐着两三个骚客,启用四桨五帆,经过六滩七湾,历尽八颠九簸,可叹十分来迟.十年寒窗,进了九八
5、家书院,抛却七情六欲,苦读五经四书,考了三番两次,今天一定要中.4.以下英文字母中,哪些是轴对称图形?A C D E F G H I A C D E F G H I J L M N O P Q R J L M N O P Q R S T U V W X Y ZS T U V W X Y Z轴对称现象如果一个平面图形沿一条直线折叠后,直线两旁的局部能够互相重合,那么这个图形叫作轴对称图形,这条直线叫作对称轴.课堂小结课堂小结如果两个平面图形沿一条直线对折后能够完全重合,那么称这两个图形成轴对称.定义区别轴对称图形:一个图形具有的特殊形状.成轴对称:两个全等图形的特殊的位置关系.二.车标设计摩洛哥
6、瑞典约旦也门英国肯尼亚 角平分线第一章 三角形的证明导入新课讲授新课当堂练习课堂小结 八年级数学下BS 教学课件 第第1 1课时课时 角平分线角平分线 1.会表达角平分线的性质及判定;重点2.能利用三角形全等,证明角平分线的性质定理,理解和掌握角平分线性质定理和它的逆定理,能应用这两个性质解决一些简单的实际问题;难点3.经历探索、猜测、证明的过程,进一步开展学生的推理证明意识和能力学习目标情境引入 如图,要在S区建一个贸易市场,使它到铁路和公路距离相等,离公路与铁路交叉处500米,这个集贸市场应建在何处?比例尺为120000DCS解:作夹角的角平分线OC,截取OD=2.5cm,D即为所求.O导
7、入新课导入新课1.1.操作测量:取点P的三个不同的位置,分别过点P作PDOA,PE OB,点D、E为垂足,测量PD、PE的长.将三次数据填入下表:2.观察测量结果,猜测线段PD与PE的大小关系,写出结:_ PD PE 第一次第一次第二次第二次 第三次第三次 COBAPD=PEpDE实验:OC是AOB的平分线,点P是射线OC上的 任意一点猜测:角的平分线上的点到角的两边的距离相等.角平分线的性质一讲授新课讲授新课验证猜测:如图,AOC=BOC,点P在OC上,PDOA,PEOB,垂足分别为D,E.求证:PD=PE.PAOBCDE证明:PDOA,PEOB,PDO=PEO=90.在PDO和和PEO中,
展开阅读全文