书签 分享 收藏 举报 版权申诉 / 11
上传文档赚钱

类型西藏自治区拉萨市2016-2017学年高二数学下学期期末考试(第八次月考)试题 [理科](有答案,word版).doc

  • 上传人(卖家):阿汤哥
  • 文档编号:71978
  • 上传时间:2018-10-09
  • 格式:DOC
  • 页数:11
  • 大小:2.58MB
  • 【下载声明】
    1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
    2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
    3. 本页资料《西藏自治区拉萨市2016-2017学年高二数学下学期期末考试(第八次月考)试题 [理科](有答案,word版).doc》由用户(阿汤哥)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
    4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
    5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
    配套讲稿:

    如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。

    特殊限制:

    部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。

    关 键  词:
    西藏自治区 拉萨市 2016 2017 年高 数学 下学 期末考试 第八 月考 试题 理科 答案 word 下载 _考试试卷_数学_高中
    资源描述:

    1、 1 西藏自治区拉萨市 2016-2017 学年高二数学下学期期末考试(第八次月考)试题 理 (满分 150分,考试时间 120分钟,请将答案填写在答题卡上) 第 I卷(选择题) 请点击修改第 I卷的文字说明 一、选择题(本大题共 12 小题,每小题 5分,共 60分) 1 已知集合 ? ?11 ? xxA , ? ?022 ? xxxB ,则 ?BA? ( ) A. ? ?21 ? xx B. ? ?01 ? xx C. ? ?21 ?xx D. ? ?10 ?xx 2( 1+i)( 2+i) = A.1-i B. 1+3i C. 3+i D.3+3i 3已知命题 xp?: , Zy? ,

    2、201522 ? yx ,则 p? 为( ) A. 2015, 22 ? yxzyx B. 2015, 22 ? yxzyx C. 2015, 22 ? yxzyx D. 不存在 2015, 22 ? yxzyx 4已知 a 为锐角,且 54sin ?a ,则 ? )cos( a? ( ) A 54? B 53 C 53? D 54 5曲线 xxy ? 331 在点 )34,1( 处的切线与坐标轴围成的三角形面积为 ( ) A 91 B 92 C 31 D 32 6已知数 列 ?na 是递增等比数列, 16,17 4251 ? aaaa ,则公比 ?q A. 4? B.4 C.-2 D.2 7

    3、已知平面向量 a? 与 b? 的夹角等于 3? , 1,2 ? ba ? ,则 ba ? 2? = A. 2 B. 5 C. 6 D. 7 8已知某棱锥的三视图如图所示,则该棱锥的表面积为( ) 2 A. 52? B. 253?C. 2+25D. 53? 9执行右面的程序框图,如果输入的 a=-1,则输出的 S= A.2 B.3 C.4 D.5 10过抛物线 C:y2=4x的焦点 F,且斜率为 3 的直线交 C于点 M( M在 x轴上方), l 为 C的准线,点 N在 l 上且 MN l , 则 M到直 线 NF 的距离为 A. 5 B. 22 C. 32 D. 33 11若函数 )(xf 为

    4、偶函数,且在 ? ?,0 上是增函数,又 0)3( ?f ,则不等式 0)()2( ? xfx 的解集为( ) A )3,2()3,( ? B ),3()2,3( ? ? 3 C )3,3(? D )3,2(? 12已知三次函数 dcxbxaxxf ? 23)( 的图象如图所示,则 )1( )3(ff ? =( ) A.-1 B.2 C.-5 D.-3 第 II卷(非选择题) 请点击修改第 II 卷的文字说明 二、填空题 (每小题 5分,共 20 分) 13若实数 yx, 满足条件?,30,02yyxyx,则 yxz 43 ? 的最大值是 _. 14中国有个名句“运筹帷幄之中,决胜千里之外”

    5、.其中的“筹”原意是指孙子算经中记载的算筹,古代是用算筹来进行计算,算筹是将几寸长的小竹棍摆在平面上进行运算,算筹的摆放形式 有纵横两种形式,如下表: 表示一个多位数时,像阿拉伯计数一样,把各个数位的数码从左到右排列,但各位数码的筹式需要纵横相间,个位,百位,万位数 用纵式表示,十位,千位,十万位用横式表示,以此类推,例如 6613用算筹表示就是: ,则 5288用算筹式可表示为 _ 15 已知幂函数 )(xfy? 的图像 过点( 9, 3),则 ? dxxf )( 16已知函数 41)( 2 ? bxaxxf ( ba, 为正实数)只有一个零点,则 ba 21? 的最小值为_. 1 0 4

    6、三、解答题 (共 70分) 17在 ABC? 中,角 A , B , C 所对应的边分别为 a , b , c , Cbba cos? . ( 1)求证: BC tansin ? ; ( 2)若 1?a , 2?b ,求 c . 18已知公差不为零的等差数列 ?na 的前 n项和为 nS ,若 11010?S ,且 421 , aaa 成等比数列 ()求数列 ?na 的通项公式; ()设数列 ?nb 满足 )1)(1( 1 ?nnn aab, 求 数列 ?nb 前 n 项和 nT . 19随着生活水平的提高,人们对空气质量的要求越来越高,某机构为了解公众对“车辆限行”的态度,随机抽查 50人

    7、,并将调查情况进行整理后制成下表: 年龄(岁) ? ?25,15 ? ?35,25 ? ?45,35 ? ?50,45 ? ?60,55 频数 10 10 10 10 10 赞成人数 3 5 6 7 9 ( 1)世界联合国卫生组织规定 : ? ?45,15 岁为青年, ? ?60,45 为中年,根据以上统计数据填写以下22? 列联表: 青年人 中年人 合计 不赞成 赞 成 合 计 ( 2)判断能否在犯错误的概率不超过 0.05的前提下,认为赞成“车 辆 限行”与年龄有关? 附: )()()( )( 22 dbcadaba bcadnK ? ?,其中 dcban ? 独立检验临界值表: 5 )(

    8、 2 kKP ? 0.100 0.050 0.025 0.010 0k 2.706 3.841 5.024 6.635 ( 3)若从年龄 ? ?25,15 ,? ?35,25 的被调查中各随机选取 1人进行调查,设选中的两人中持不赞成“车辆限行”态度的人员为 ? ,求随机变量 ? 的分布列和数学期望 ?E . 20如图,菱形 ABCD 与四边形 BDEF相交于 BD, ? BFABC ,120 平面 ABCD, DE/BF,BF=2DE,AF FC, M为 CF 的中点, GBDAC ? ( I) 求证: GM平面 CDE; ( II) 求直线 AM 与平面 ACE 成角的正弦值 21如图,椭

    9、圆 )0(1:2222 ? babyaxE 的离心率为 33 点( 2,3 )为椭圆上的一点 . ( 1)求椭圆 E 的标准方程; ( 2)若斜率为 k 的直线 l 过点 )1,0(A ,且与椭圆 E 交于 C 、 D 两点, B 为椭圆 E 的下顶点,求证:对于任意的 k ,直线 BC , BD 的斜率之积为定值 . 22设函数xexxf2)( ? , )0(ln)( ? axaxxg . ( 1)求函数 )(xf 的极值; ( 2)若 ),0(, 21 ? xx ,使得 )()( 21 xfxg ? 成立,求 a 的取值范围 . 6 理数参考答案 1 D 2 B 3 A 4 C 5 A 6

    10、 D 7 A 8 D 9 B 10 C 11 A 12 C 13 14 15 2/3 16 17 ()见解析;() 【解析】 试题分析:()根据正弦定理变形, 可化为 ,由 于 待 证 的 是 , 所 以 将 换成 , 然 后 根 据 公 式 展 开 , ,于是有 ,所以有 ;()根据已知条件 ,当 , 时, ,于是根据余弦定理可以求出 的值 . 试题解析:()由 根据正弦定理得 , 即 , , , 得 ()由 ,且 , ,得 , 由余弦定理, , 所以 18 () ;() . 【解析】 试题分析: (1)利用等比数列的基本性质及等差数列的前 项和求出首项和公差 ,进而求出数列 的通项公式 ;

    11、 (2)利用裂项相消法求和 . 试题解析:()由题意知: 解得 ,故数列 ; 7 ()由()可知 , 则 点睛:本题考查了数列求和,一般数列求和方法( 1)分组转化法,一般适用于等差数列加等比数列,( 2)裂项相消法求和, 等的形式,( 3)错位相减法求和,一般适用于等差数列乘以等比数列,( 4)倒序相加法求和,一般距首末两项的和是一个常数,这样可以正着写和和倒着写和,两式相加除以 2 得到数列求和 ,(5)或是具 有某些规律求和 . 19 ( 1)见解析;( 2)见解析;( 3)见解析 . 【解析】 试题分析:( 1)根据数据填写列联表; ( 2)计算 ,对照数表即可得出结论; ( 3) 的

    12、可能取值为 ,分别计算概率即可 . 试题解析: (1) 青年人 中年人 合计 不赞成 赞成 合计 (2)由( 1)表中数据得 . ,因此,在犯错误的概率不超过 的前提下, 认为赞成“车辆限行”与年龄有关 . ( 3) 的可能取值为 , , ,所以随机变量 的分布列: 8 所以数学期望 . 20 ( I)见解析;( II) . 【解析】 试题分析: (I) 取 的中点 ,连接 ,要证 平面 ,只需证平面平面 ,又 , 可得; ()以 为坐标原点,分别以 所在直线为 轴, 轴,过点 与平面 垂直的直线为 轴,建立空间直角坐标系 ,用空间向量求解即可 . 试题解析: 证明:()取 的中点 ,连接 .

    13、 因为 为菱形对角线的交点,所以 为 中点,又 为 中点,所以 , 又因为 分别为 的中点, 所以 ,又因为 ,所以 , 又 ,所以平面 平面 , 又 平面 ,所以 平面 ; ()连接 ,设菱形 的边长 ,则由 ,得 , 又因为 ,所 以 , 则在直角三角形 中, ,所以 ,且由 平面 , ,得 平面 . 9 以 为坐标原点,分别以 所在直线为 轴, 轴,过点 与平面 垂直的直线为轴,建立空间直角坐标系 ,则 则 ,设 为平面 的一个法向量,则 即令 ,得 ,所以 , 又 ,所以 ,设直线与平面 所成角为 ,则 .所以直线 与平面 所成角的正弦值为. 点睛:利用法向量求解空间线面角的关键在于“

    14、四破”:第一,破“建系关”,构建恰当的空间直角坐标系;第二,破“求坐标关”,准确求解相关点的坐 标;第三,破“求法向量关”,求出平面的法向量;第四,破“应用公式关” . 21 ( ) e=33, c=33 a, a2=b2+(33 a)2 , 又椭圆过点 (3,2), 3a2+2b2=1 由 解得 a2=6,b2=4, 所以椭圆 E的标准方程为 x26+y24=1; 10 ( )证明:设直线 l:y=kx+1, 联立 x26+y24=1y=kx+1得: (3k2+2)x2+6kx?9=0, 设 C(x1,y1),D(x2,y2), 则有 x1+x2=?6k3k2+2,x1x2=?93k2+2.

    15、 易知 B(0,?2), 故 kBC?kBD=y1+2x1?y2+2x2=kx1+3x1?kx2+3x2=k2x1x2+3k(x1+x2)+9x1x2 =k2+3k(x1+x2)x1x2+9x1x2=k2+3k?2k3?(3k2+2)=?2, 为定值。 22 ( 1) 的极大值为 ,极小值为 0;( 2) . 【解析】 试题分析: ( 1)对函数求导,令 得 或 ,进而列表讨 论单调性即可得极值; ( 2) ,使得 ,等价于当 时, ,进而求最值即可 . 试题解析: (1)由 得 ,令 得 或 . 当 变化时, 与 的变化情况如下表: 0 2 0 0 递减 极小值 0 递增 极大值 递减 故函数 的极大值为 ,极小值为 0. (2) ,使得 ,等价于当 时, , 由 得 ,

    展开阅读全文
    提示  163文库所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
    关于本文
    本文标题:西藏自治区拉萨市2016-2017学年高二数学下学期期末考试(第八次月考)试题 [理科](有答案,word版).doc
    链接地址:https://www.163wenku.com/p-71978.html

    Copyright@ 2017-2037 Www.163WenKu.Com  网站版权所有  |  资源地图   
    IPC备案号:蜀ICP备2021032737号  | 川公网安备 51099002000191号


    侵权投诉QQ:3464097650  资料上传QQ:3464097650
       


    【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。

    163文库