河北省馆陶县2016-2017学年高二数学下学期期末考试试题 [理科](有答案解析,word版).doc
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《河北省馆陶县2016-2017学年高二数学下学期期末考试试题 [理科](有答案解析,word版).doc》由用户(阿汤哥)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 河北省 馆陶县 2016 2017 年高 数学 下学 期末考试 试题 理科 答案 解析 word 下载 _考试试卷_数学_高中
- 资源描述:
-
1、 1 2016 2017学年第二学期期末高二数学(理科)试题 一、选择题 (本大题共 12小题,每小题 5分,共 60分,在每小题给出的四个选项中,只有一项是符合题目要求的 ) 1. 集合 , ,集合 满足 ,则 的个数为 A. 3 B. 4 C. 7 D. 8 【答案】 C 【解析】 由题意可得 ,集合 ,其中 M为集合 的真子集,由子集个数公式可得: C的个数为 个 .选 C. 2. 2017年 1月我市某校高三年级 1600名学生参加了 2017届全市高三期末联考,已知数学考试成绩 (试卷满分 150分) 统计结果显示数学考试成绩在 80 分到 120分之间的人数约为总人数的,则此次期末
2、联考中成绩不低于 120分的学生人数约为 A. 120 B. 160 C. 200 D. 240 【答案】 C 【解析】 结合正态分布图象的性质可得:此次期末联考中成绩不低于 120分的学生人数约为. 选 C. 3. 已知 与 之间的一组数据:若 关于 的线性回归方程为 ,则 的值为( ) A. 1 B. 0.85 C. 0.7 D. 0.5 【答案】 D 【解析】 由表格可知 , ,由线性回归 方程必过样本中心点可得: ,则 ,故选 D. 点睛:函数关系是一种确定的关系,相关关系是一种非确定的关系 .事实上,函数关系是两个非随机变量的关系,而相关关系是非随机变量与随机变量的关系 .如果线性相
3、关,则直接根据用公式求 ,写出回归方程,回归直线方程恒过点 . 2 4. 设 ,则 “ ” 是 “ ” 的( ) A. 充分不必要条件 B. 必要不充分条件 C. 充要条件 D. 既不充分也不必要条件 【答案】 A 【解析】 试题分析:因为 ,所以 “ ” 是 “ ” 的充分不必要条件,故选 A. 点睛:充分、必要条件的三 种判断方法 1定义法:直接判断 “ 若 则 ” 、 “ 若 则 ” 的真假并注意和图示相结合,例如 “ ? ”为真,则 是 的充分条件 2等价法:利用 ? 与非 ?非 , ? 与非 ?非 , ? 与非 ?非 的等价关系,对于条件或结论是否定式的命题,一般运用等价法 3集合法
4、:若 ? ,则 是 的充分条件或 是 的必要条件;若 ,则 是 的充要条件 5. 设复数 满足 ,则 =( ) A. B. C. D. 【答案】 C 【解析】 由题意可得: . 6. 在 展 开式所得的 的多项式中,系数为有理数的项有( ) A. 16项 B. 17项 C. 24项 D. 50项 【答案】 B 【解析】 展开式的通项为 ,其中 r=0, 1, 2?100 , 要使系数为有理数则需要 r是 6的倍数, r=0, 6, 16, 18, ?96 共 17个值, 故系数为有理数的项有 17项 . 选 B. 点睛:求二项展开式有关问题的常见类型及解题策略 (1)求展开式中的特定项 .可依
5、据条件写出第 项,再由特定项的特点求出值即可 . (2)已知展开式的某项,求特定项的系数 .可由某项得出参数项,再由 通项写出第 项,由特定项得出值,最后求出其参数 . 3 7. 曲线 的参数方程为 ( 为参数),则它的普通方程为( ) A. B. C. , D. , 【答案】 C 【解析】 由 可有 ,又因为 ,所以,即 , ,故选择 C. 8. 定义在 上的奇函数 满足 ,且当 时,不等式 恒成立,则函数 的零点的个数为 A. B. C. D. 【答案】 C 【解析】 定义在 上的奇函数 满足 ,且 ,又 时, ,即 ,函数 ,则 时是增函数 ,又 是偶函数, 时, 是减函数,结合函数的定
6、义域为 ,且 ,所以函数 的零点的个数为 ,故选C. 9. 若点 是曲线 上任意一点,则点 到直线 的距离的最小值为( ) A. B. C. D. 【答案】 C 【解析】 点 是曲线 上任意一点 , 所以当曲线在点 P的切线与直线 平行时,点 P到直线 的距离的最小, 直线 的斜率为 1,由 ,解得 或 (舍) . 所以曲线与直线的切点为 . 点 到直线 的距离最小值是 .选 C. 10. 盒中装有 10 只乒乓球,其中 6只新球, 4只旧球,不放回地依次摸出 2个球使用,在第一次摸出新球的条件下,第二次也摸出新球的概率为( ) 4 A. B. C. D. 【答案】 B. 【解析】 设 “ 第
7、一次摸出新球 ” 为事件 , “ 第二次摸出新球 ” 为事件 ,则,故选 B. 11. 某高校大一新生中的 6名同学打算参加学校组织的 “ 演讲团 ” 、 “ 吉他协会 ” 等五个社团,若每名同学必须参加且只能参加 1个社团且每个社团至多两人参加,则这 6个人中没有人参加 “ 演讲团 ” 的不同参加方法数为( ) A. 3600 B. 1080 C. 1440 D. 2520 【答案】 C 【解析】 由于每名同学必须参加且只能参加 1个社团且每个社团至多两人参加,因此可以将问题看成是将 6名同学分配到除 “ 演讲团 ” 外的四个社团或三个社团,可以分两类: 第一类:先将 6人分成四组,分别为
展开阅读全文
链接地址:https://www.163wenku.com/p-71490.html