知识点47几何最值(2020年全国各地中考数学真题分类汇编).docx
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《知识点47几何最值(2020年全国各地中考数学真题分类汇编).docx》由用户(四川天地人教育)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2020年全国各地中考数学真题分类汇编 知识点47 几何最值 【2020年全国各地中考数学真题分类汇编】 知识点 47 几何 2020 全国各地 中考 数学 分类 汇编 下载 _真题分类汇编_中考复习_数学_初中
- 资源描述:
-
1、 知识点知识点 47 几何最值几何最值 一、选择题一、选择题 12 (2020泰安)如图,点 A,B 的坐标分别为 A(2,0) ,B(0,2) ,点 C 为坐标平面内一点, BC1,点 M 为线段 AC 的中点,连接 OM,则 OM 的最大值为( ) A 2 1 B 2 1 2 C2 2 1 D2 2 1 2 答案 B 解析本题考查了圆的概念、勾股定理、三角形中位线的性质以及动点运动最值问题,因为点 C 为坐标平面内一点, BC1, 所以点 C 在以点 B 为圆心、 1 长为半径的圆上, 在 x 轴上取 OA=OA=2, 当 A、B、C 三点共线时,AC 最大,则 AC=2 2 1,所以 O
2、M 的最大值为 2 1 2 ,因此本 题选 B 10 (2020无锡)如图,等边ABC 的边长为 3,点 D 在边 AC 上,AD1 2,线段 PQ 在边 BA 上 运动,PQ1 2,有下列结论: CP 与 QD 可能相等; AQD 与BCP 可能相似; 四边形 PCDQ 面积的最大值为31 3 16 ; 四边形 PCDQ 周长的最小值为 3 37 2 . 其中,正确结论的序号为( ) A B C D 答案 D A B C O M x y M C B A/AOx y D Q P CB A (第 12 题) N M H G A BC D E FF E D Q P CB A F E A BC P
3、Q DD Q CB(P) A E 解析设 AQx,则 BP5 2x 如图 1,当点 P 与 B 重合时,此时 QD 为最大,过点 Q 作 QEAC,AQ5 2,AE 5 4,QE 5 3 4 ,DE3 4,此时 QD 21 2 ,即 0QD 21 2 ;而3 3 2 CP3,两个范围没有交集,即 不可能相等;错误 若AQDBCP,则AD BP AQ BC,代入得 2x 25x+30,解得 x11,x23 2,都存在,正 确; 如图 2, 过点 D 作 DEAB, 过点 P 作 PFBC, S四边形PCDQ=SABCSAQDSBPC 3 4 321 2x 3 4 1 23 3 4 (5 2x)
4、3 4 x 21 3 16 ,5 2x0,即 x 5 2,当 x= 5 2时面积最大为 31 3 16 ;正确; 如图, 将 D 沿 AB 方向平移1 2个单位得到 E, 连接 PE, 即四边形 PQDE 为平行四边形, QD=PE, 四边形周长为 PQ+QD+CD+CP=3+PE+PC,即求 PE+PC 的最小值,作点 E 关于 AB 的对称点 F, 连接 CF,线段 CF 的长即为 PE+PC 的最小值;过点 D 作 DGAB,AG1 4,EN=FN=HM= 3 4 , CH3 3 2 3 4 7 3 4 ,FHMN3 2 1 4 1 2 3 4,FC 39 2 ,四边形 PCDQ 周长的
5、最小值为 3 39 2 ,错误. 12(2020荆门)如图 6,在平面直角坐标系中,长为 2 的线段 CD(点 D 在点 C 右侧)在 x 轴上移 动,A(0,2),B(0,4),连接 AC、BD,则 ACBD 的最小值为( ) A25 B210 C62 D35 答案B 解析如图#,过点 B 作 BBx 轴(点 B在点 B 的左侧),且使 BB2,则 B(2,4);作 A 关于 x x O y 图 6 D C B A x O y 图# D C B A B A 轴的对称点 A,则 A(0,2);连结 AB交 x 轴于点 C;在 x 轴上向右截取 CD2,则此时 AC BD 的值最小,且最小值AB
6、 22 26210故选 B 10 (2020南通)ABC 中,AB2,ABC60 ,ACB45 ,D 为 BC 的中点,直线 l 经过 点 D,过 B 作 BFl 于 F,过 A 作 AEl 于 E求 AEBF 的最大值为 A6 B22 C23 D32 答案A 解析过点 A 作 AHBC 于点 H,在 RtAHB 中,ABC60 ,得 BH1,AH3,在 RtAHC 中,ACB45 ,得 AC6 当直线 l 与 AB 相交时,延长 BF,过点 A 作 AMBF 于点 M,可得 AEBFAEFMBM,在 RtAMB 中,BMAB,当直线 lAB 时,最大值为 2; 当直线 l 与 AC 相交时,
7、过点 C 作 CHl 于点 H,由点 D 为 BC 中点可证明BFDCHD,BF CH, 延长 AE,过点 C 作 CNAE 于点 N, 可得 AEBFAECK AEENAN,在 RtACN 中,ANAC, 当直线 lAC 时最大值为6;所以 AEBF 的最大值为6 11(2020 恩施)如图,正方形ABCD的边长为 4,点E在AB上且1BE ,F为对角线AC上一 动点,则BFE周长的最小值为( ) A. 5 B. 6 C. 7 D. 8 答案B 解析连接 ED 交 AC 于一点 F,连接 BF, 四边形 ABCD 是正方形, 点 B 与点 D 关于 AC 对称, M F E DBC A H
8、l K N E F D A CBH BF=DF, BFE的周长=BF+EF+BE=DE+BE,此时周长最小, 正方形ABCD的边长为 4, AD=AB=4,DAB=90 , 点E在AB上且 1BE , AE=3, DE= 22 5ADAE , BFE的周长=5+1=6, 故选:B. 10.(2020永州)已知点 00 ,P xy 和直线y kxb ,求点 P到直线y kxb 的距离 d可用公式 00 2 1 kxyb d k 计算 根据以上材料解决下面问题: 如图,C的圆心 C 的坐标为 1,1, 半径为 1, 直线 l 的表达式为 26yx ,P是直线 l 上的动点,Q是C上的动点,则PQ的
9、最小值是( ) A. 3 5 5 B. 3 5 1 5 C. 6 5 1 5 D. 2 【答案】B 【详解】过点 C 作直线 l 的垂线,交C于点 Q,交直线 l 于点 P,此时 PQ的值最小,如图, 点 C 到直线 l 的距离 00 22 2 1 1 63 5 5 1 12 kxyb d k ,C半径为 1, PQ的最小值是 3 5 1 5 ,故选:B. 二、填空题二、填空题 17(2020 绵阳)如图,四边形 ABCD 中,ABCD,ABC60 ,ADBCCD4,点 M 是 四边形ABCD内的一个动点, 满足AMD90 , 则点M到直线BC的距离的最小值为 答案332 解析延长 AD、BC
10、 交于点 P, 作 MHPB 于 H. ABCD, PD AD PC BC ,ABCDCP60 .ADBCCD4,PDPC,PDC 为等 边三角形,PDPCCD4,P60 . 由AMD90 ,可知点 M 在以 AD 为直径的E 上,且在四边形 ABCD 内的一个动点,根据垂线段最短可知 E、M、H 三点共线时 MH 最小.在 RtPEH 中,EP6,P60 ,EHEPsin60 33, MH 的最小值EHEM332. 18 (2020扬州)如图,在 ABCD 中,B=60 ,AB=10,BC=8,点 E 为边 AB 上的一个动点, M D C BA H P M DC BA E 连接 ED 并延
11、长至点 F ,使得 DF= 1 4 DE,以 EC、EF 为邻边构造 EFGC,连接 EG,则 EG 的最 小值为 . (第 18 题图) 答案9 3 解析本题考查了解直角三角形、三角形相似的判定与性质三角形、平行四边形面积公 式、垂线段最短等知识,解题的关键是将问题转化为垂线段最短来解决过 A 作 AM BC 于 M, 设 EG、DC 交于 H 在 RtAMB 中, B=60 , AB=10, sinB= 3 2 AM AB , AM=5 3, EFGC 中,DF= 1 4 DE,ED= 4 5 DF,又 EF=GC, 4 5 ED GC ,EFCG,EHDGHC, 4 5 DHEDEH H
展开阅读全文