知识点31圆的基本性质(2020年全国各地中考数学真题分类汇编).docx
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《知识点31圆的基本性质(2020年全国各地中考数学真题分类汇编).docx》由用户(四川天地人教育)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2020年全国各地中考数学真题分类汇编 知识点31 圆的基本性质 【2020年全国各地中考数学真题分类汇编】 知识点 31 基本 性质 2020 全国各地 中考 数学 分类 汇编 下载 _真题分类汇编_中考复习_数学_初中
- 资源描述:
-
1、 知识点知识点 31 圆的基本性质圆的基本性质 一、选择题一、选择题 9(2020 杭州)如图,已知BC是O的直径,半径OABC,点D在劣弧AC上(不与点A,点 C重合),BD与OA交于点E设AED,AOD,则( ) A3180 B2180 C390 D 290 答案D 解析本题考查了同圆的半径相等,三角形的内角和定理以及三角形的外角因为 OABC,所以AOB90因为OBOD,所以BD在OBD中,B DBOD180,即2D90180,所以2D90因为AED是ODE 的外角,所以DAEDAOD,所以2()90,整理,得290, 因此本题选D 4(2020绍兴)如图点 A,B,C,D,E 均在O
2、上BAC=15 ,CED=30 ,则BOD 的 度数为( ) A45 B60 C75 D90 答案D 解析本题考查了圆周角、圆心角以及它们所对的弧的度数之间的关系在同圆中, 圆周角的度数等于它所对的弧的度数的一半,圆心角的度数等于它所对的弧的度数,因为 BAC=15,CED=30,所以弧 BC 是 30,弧 CD 是 60,则弧 BD 是 90,故它所对的圆心 角BOD 的度数是 90因此本题选 D 4(2020 湖州)如图,已知四边形 ABCD 内接于O,ABC70,则ADC 的 度数是( ) A70 B110 C130 D140 【分析】根据圆内接四边形的性质即可得到结论 【解答】解:四边
3、形 ABCD 内接于O,ABC70,ADC180ABC18070 110,故选:B 7(2020黔东南州)如图,O 的直径 CD20,AB 是O 的弦,ABCD,垂足为 M,OM:OC 3:5,则 AB 的长为( ) A8 B12 C16 D291 答案C 解析如图,连接 OA, O 的直径 CD20,OM:OD3:5,OD10,OM6. ABCD,AM= OA2 OM2= 102 62=8,AB2AM16 9(2020安徽)已知点A,B,C在O上,则下列命题为真命题的是( ) A若半径OB平分弦AC,则四边形OABC是平行四边形 B若四边形OABC是平行四边形,则ABC120 C若ABC12
4、0,则弦AC平分半径OB A E D O C B D若弦AC平分半径OB,则半径OB平分弦AC 答案B 解析逐项分析如下: 选 项 逐项分析 图示 真 假 命 题 A 如图,若OB平分AC,则OB是AC的垂直平分线,无法推理 四边形OABC是平行四边形. 假 B 如图,若四边形OABC是平行四边形,则ABOCOAOB, OAB和OBC是等边三角形, ABCABOOBC 120. 真 C 如图,若ABC120,无法推理出AC平分OB. 假 D 如图,若AC平分OB,无法推理出OB平分AC. 假 9(2020 陕西)如图, ABC 内接于O,A50 ,E 是边 BC 的中点,连接 OE 并延长,交
5、O 于点 D,连接 BD,则D 的大小( ) A55 B65 C60 D75 第 9 题图 答案B解析 E 是弦 BC 的中点,由垂径定理的逆定理可知 OEBC,连接 OB、OC,由A50 可知BOC2A100 ,由等腰三角形的“三线合一”可知BOD50 ,在等腰 BOD 中,D (180 50 ) 265 第 9 题答图 6(2020青岛)如图,BD 是O 的直径,点 A,C 在O 上,弧 AB=弧 AD,AC 交 BD 于点 G. 若 A B C O A B C O A B C O A B C O E O BC D A E O BC D A COD=126,则AGB 的度数为( ) A.9
6、9 B.108 C.110 D.117 答案B 解析本题考查了圆周角定理及其推论的应用,解答过程如下: BD 是O 的直径,BAD=90. 弧 AB=弧 AD,ADB=ABD=45. COD=126,CAD= 2 1 COD= 2 1 126=63. AGB=ADB+CAD=45+63=108. 因此本题选 B 8(2020泰安)如图,ABC 是O 的内接三角形,ABBC,BAC30,AD 是直径,AD 8,则 AC 的长为( ) A4 B4 3 C8 3 3 D2 3 答案 B 解析本题考查了等腰三角形的性质、直径所对的圆周角是直角以及锐角三角函数,因为ABC 中, ABBC,BAC30,所
7、以B=120,因为四边形 ABCD 内接于O,所以D=60.因为 AD 是O 的直径,所以ACD=90.因为 sinD= AC AD ,所以 AC=ADsinD=8 3 2 =4 3 ,因此本题选 B 7. (2020 淮安)如图,点 A、B、C 在O 上,ACB=54 ,则ABO 的度数是( ) A.54 B.27 C.36 D.108 A BC D O A O C B D (第 8 题) 答案 C 解析本题考查了同弧所对的圆周角和圆心角的关系, 由已知得AOB=2ACB=108, 再在等腰三 角形 AOB 中由三角形的内角和定理求出ABO 的度数 ACB=54 , AOB=2ACB=108
8、 , OA=OB, ABO=OAB=(180 -108 ) 2=36 故选 C 9 (2020福建) 如图, 四边形ABCD内接于O,ABCD,A为BD中点,60BDC, 则ADB 等于( ) A.40 B.50 C.60 D.70 答案A 解析本题考查了弧,弦,圆周角等的关系,ABCD,A为BD中点,ABADCD, 60BDC,优弧 BAC 是 240,弧 AB 是 80,ADB=40,因此本题选 A 7(2020荆门)如图 4,O 中,OCAB,APC28 ,则BOC 的度数为( ) A14 B28 C42 D56 P C A B O 图 4 答案D 解析连结 OA由垂径定理可知ACBC,
9、BOCAOC由圆周角定理可知AOC2P 56 BOC56 故选 D 16(2020 镇江)如图, 是半圆的直径,、 是半圆上的两点, = 106 ,则 等 于( ) A10 B14 C16 D26 答案C 解析本题考查了圆周角相关知识,连接 BC,则BD180 ,ADC106 ,B74 , AB 为O 的直径,ACB90 ,CAB16 7(2020常州)如图,AB 是O 的弦,点 C 是优弧 AB 上的动点(C 不与 A、B 重合),CHAB, 垂足为 H,点 M 是 BC 的中点若O 的半径是 3,则 MH 长的最大值是( ) A3 B4 C5 D6 (第 7 题) 答案A 解析解析本题考查
10、了直角三角形斜边中线等于斜边的一半,因为BHC90 ,M 为 BC 的中点, 所以 MH 1 2 BC,而 BC 的最大值是直径,所以 MH 的最大值等于 3 5(2020天水)如图所示,PA、PB 分别与O 相切于 A、B 两点,点 C 为O 上一点,连接 AC、 BC,若P70 ,则ACB 的度数为( ) A50 B55 C60 D65 答案B O AB C D 解析根据切线的性质和圆周角定理可求,连接 OA、OB,则ACB 1 2AOB,又由 PA、PB 分别 与O 相切于 A、B 两点,得到PAOPBO90 ,所以AOB180 P180 70 110 , 从而得到ACB 1 2110
11、55 ,因此本题选 B 5. (2020张家界)如图,四边形ABCD为O的内接四边形,已知BCD为120,则BOD的 度数为( ) A. 100 B. 110 C. 120 D. 130 答案C 解析本题考查的是圆内接四边形的性质,掌握圆内接四边形的对角互补是解题的关键 根据圆内接四边形的性质求出A,根据圆周角定理计算,得到答案 解:四边形 ABCD是O内接四边形, A180BCD60 , 由圆周角定理得,BOD2A120, 故选:C 14(2020 河北)有一题目:“已知:点O为 ABC的外心,BOC=130 ,求A.”嘉嘉的解答为:画 以 及它的外接圆O,连接OB,OC,如图8.由BOC=
12、2A=130 ,得A=65 . 而淇淇说:“嘉嘉考虑的不周全, 还应有另一个不同的值.” 下列判断正确的是 A.淇淇说的对,且A的另一个值是115 B.淇淇说的不对,A就得65 C.嘉嘉求的结果不对,A应得50 D.两人都不对, 应有3个不同值 答案A 解析如图1,当A是锐角时, ABC的外心O在其内部,A=65 ;如图2,当A是钝角时, ABC 的外心O在其外部,1=2A,A= 1 21= 1 2 230 =115 .故A=65 或115 ,答案为A. 图8 O B A C 7.(2020 牡丹江)如图,点 A,B,S 在圆上,若弦 AB 的长度等于圆半径的 2倍,则ASB 的度 数是( )
13、 A22.5 B30 C45 D60 答案C解析设圆心为 O,连接 OA,OB,如图, 弦 AB 的长度等于圆半径的 2倍,即 AB2OA2OB, OA2+OB2AB2,OAB 为等腰直角三角形,AOB90 , 根据圆周角定理可得ASB 2 1 AOB45 ,故选 C 10(2020 宜昌)如图,E,F,G 为圆上的三点,FEG=50 ,P 点可能是圆心的是( ). A B C D 答案C解析由圆周角定理可知:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧 所对的圆心角的一半当点 P 为圆心时,根据圆周角定理,可得FPG=2FEG故选:C 9(2020 凉山州)下列命题是真命题的是(
14、 ) A顶点在圆上的角叫圆周角 B三点确定一个圆 C圆的切线垂直于半径 D三角形的内心到三角形三边的距离相等 答案D解析因为顶点在圆上且两边都与圆相交的角叫圆周角,不在同一条直线上的三个点确定一 个圆,圆的切线垂直于过切点的半径,所以 A、B、C 选项皆为假命题,故选 D 11(2020 凉山州)如图,等边三角形 ABC 和正方形 ADEF 都内接于O,则 ADAB( ) A2 23 B23 C32 D322 A B S (第 7 题图) O A B S 答案B解析如答图,连接 OA、OB、OD,则AOD90 ,AOB120 令 OAOBODr, 则 AD 2r,AB3r,从而 ADAB23,
15、故选 B 10.(2020潍坊)如图,在Rt AOB中, 90 ,3,4AOBOAOB,以点 O 为圆心,2 为半径的圆 与OB交于点 C,过点 C 作CDOB交AB于点 D,点 P 是边OA上的动点当PCPD最小时, OP的长为( ) A 1 2 B. 3 4 C. 1 D. 3 2 答案B解析由题意可知,点 C、D 是定点,点 P 是边OA上的动点,PC+PD 最小值时,即为将军 饮马问题.点点 P 为点 C 关于点 O 的对称点时, PC+PD 的值最小, 求出 OP 的长即可.延长 CO 交O 于点 E,连接 ED,交 AO 于点 P,如图, CDOB,DCB=90 ,又 90AOB,
16、DCB=AOB,CD/AO, BCCD BOAO OC=2, D P O CB A E D P O CB A 第 11 题图 O F E D CB A 第 11 题答图 r r r O F E D C B A OB=4,BC=2, 2 43 CD ,解得,CD= 3 2;CD/AO, EOPO ECDC ,即 2 = 43 PO ,解得,PO= 3 4 . 7(2020 营口) 如图, AB 是O 的直径, 点 C, 点 D 是O 上的两点, 连接 CA, CD, AD, 若CAB=40 , 则ADC 的度数是( ) A110 B130 C140 D160 答案B解析如图,连接 BC,AB 是
17、O 的直径,ACB=90 ,CAB+CBA =90 , CAB=40 ,CBA =50 ,ADC +CBA =180 ,ADC=130 9 (2020 滨州) 在O中, 直径 AB15, 弦 DEAB 于点 C 若 OC: OB3: 5, 则 DE 的长为 ( ) A6 B9 C12 D15 答案C 解析本题考查了垂径定理和勾股定理, 直径AB=15, BO=7.5, OC: OB=3: 5, CO=4.5, DC= 22 ODOC =6,DE=2DC=12,因此本题选C 8(2020 内江)如图,点 A、B、C、D 在O 上,120AOC,点 B 是AC的中点,则D的 度数是( ) A. 3
18、0 B. 40 C. 50 D. 60 答案 A解析本题考查了圆心角、弧、弦的关系定理、圆周角定理,掌握在同圆或等圆中,同弧或 等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半是解题的关键根据圆心角、弧、弦的关 系定理得到AOB 1 2 AOC,再根据圆周角定理解答 O D C B A O D C B A 连接 OB,点 B 是AC的中点,AOB 1 2 AOC60 , 由圆周角定理得,D 1 2 AOB30 ,因此本题选 A 14 (2020临沂)如图,在O中,AB为直径,80AOC,点D为弦AC的中点,点E为BC 上任意一点.则CED的大小可能是( ) A.10 B.20 C.30 D
19、.40 答案C解析梳理题目中的已知条件,有直径,可以相应的有 90的圆周角;80AOC,则 50OACOCA;同时点D为弦AC的中点,则可以考虑利用垂径定理;另外,题目中具 体数值较少,CED的具体值不容易求,那么我们可以根据已有条件探求它的取值范围,从而确 定那个值在范围内. 解:连接 AE,作过 OD 的直线分别交圆周于点 M、N,连接 CM,如下图: 80AOC40AEC40CEDAECAED; 又点D为弦AC的中点 1 40 2 CODAOC 1 20 2 CMNCOD CED所对的弧大于CNCEDCMN,即:20CED 综上:2040CED ,选 C. 9(2020 宜宾)如图,AB
20、 是O 的直径,点 C 是圆上一点,连结 AC 和 BC,过点 C 作 CDAB 于 点 D,且 CD4,BD3,则O 的周长是( ) A 25 3 B 50 3 C 625 9 D 625 36 M N 答案A 解析根据“直径所对的圆周角为直角”,得ACB90 ,由 CDAB,根据勾股定理得 BC 22 CDBD 5 , 根 据 相 似 三 角 形 的 判 定 ( 两 角 对 应 相 等 的 两 个 三 角 形 相 似 ) 得 Rt ABCRt CBD,再根据相似三角形的三边对应成比例,得 AB CB BC BD ,即 AB 25 3 ,O 的周长是 25 3 8(2020 广州)往直径为
21、52cm 的圆柱形容器内装入一些水以后,截面如图 4 所示,若水面宽 AB=48cm,则水的最大深度为( ) A8cm B10cm C16cm D20cm 答案C 解析本题考查了垂径定理,解答过程如下:过点 O 作 OCAB 于 D,交O 于点 C,连接 OA由题意, OA=OC26cm,AD= 1 2 AB=24cm,再由勾股定理可得:OC=10cm,所以水深 CD=OC-OD=26-10=16cm.因此本 题选 C 9(2020武汉)如图,在半径为 3 的O 中,AB 是直径,AC 是弦,D 是弧 AC 的中点,AC 与 BD 交于点 E若 E 是 BD 的中点,则 AC 的长是 ( )
22、A 5 3 2 B3 3 C3 2 D4 2 48 O B A 图图4 48 D O C B A 图图4 答案D 解析本题考查了圆的垂径定理,弧线圆心角关系,全等判定,中位线等定理,连接 OD,交 AC 于 点 F,由 D 是弧 AC 的中点,易证出 ODAC,AFCF,又O 是 AB 的中点,2OFBC,AB 是直径,ACB90,又E 是 BD 的中点,易证出EFDECB(AAS)DFBC,又 半径为 3,2OFDFBC2,在 RtABC 中,2426BCAB 2222 AC,因此本题选 D 10(2020 海南)如图,已知 AB 是O 是直径,CD 是弦,若BCD36,则ABD 等于( )
23、 A54 B56 C64 D66 答案A 解析AB 是O 的直径,ADB90 .又由圆周角定理可知AC,ABD90 A 90 36 54 . 6.(2020吉林)如图,四边形ABCD内接于O若108B ,则D的大小为( ) A. 54 B. 62 C. 72 D. 82 【答案】C 【详解】因为,四边形ABCD内接于O,108B ,所以,D=180 -18010872B 故选:C. D E C B A O F 9(2020黄石)如图,点 A、B、C 在O 上,CDOA,CEOB,垂足分别为 D、E,若DCE 40,则ACB 的度数为( ) A140 B70 C110 D80 答案 C 解析先根
展开阅读全文