书签 分享 收藏 举报 版权申诉 / 10
上传文档赚钱

类型知识点22线段垂直平分线、角平分线、中位线(2020年全国各地中考数学真题分类汇编).docx

  • 上传人(卖家):四川天地人教育
  • 文档编号:709804
  • 上传时间:2020-08-21
  • 格式:DOCX
  • 页数:10
  • 大小:382.69KB
  • 【下载声明】
    1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
    2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
    3. 本页资料《知识点22线段垂直平分线、角平分线、中位线(2020年全国各地中考数学真题分类汇编).docx》由用户(四川天地人教育)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
    4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
    5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
    配套讲稿:

    如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。

    特殊限制:

    部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。

    关 键  词:
    2020年全国各地中考数学真题分类汇编 知识点22 线段垂直平分线、角平分线、中位线 【2020年全国各地中考数学真题分类汇编】 知识点 22 线段 垂直平分线 平分线 中位线 2020 全国各地 中考 下载 _真题分类汇编_中考复习_数学_初中
    资源描述:

    1、 知识点知识点 22 线段垂直平分线、角平分线、中位线线段垂直平分线、角平分线、中位线 一、选择题一、选择题 6(2020 枣庄)如图,在 ABC 中,AB 的垂直平分线交 AB 于点 D,交 BC 于点 E,连接 AE若 BC=6,AC=5,则 ACE 的周长为( ) A8 B11 C16 D17 答案B解析利用线段垂直平分线的性质进行等线段间的转换, 然后整体求值 DE 垂直 平分 AB,AE=BE,ACE 的周长=AC+CE+AE=AC+CE+BE=AC+BC=5+6=11 7 (2020怀化)在 RtABC 中,B90,AD 平分BAC,交 BC 于点 D,DEAC, 垂足为点 E,若

    2、 BD3,则 DE 的长为( ) A3 B3 2 C2 D6 答案A 解析根据角平分线的性质即可求得 解:B90, DBAB, 又AD 平分BAC,DEAC, 由角平分线的性质得 DEBE3, 故选:A 1(2020 河北)如图1,在平面内作已知直线m的垂线,可作垂线的条数有 A.0条 B.1条 C.2条 D.无数条 答案D 解析在平面内,过任意一点都能作出直线m的一条垂线,故这样的垂线有无数条,选项D 正确. A B C D E 7 (2020 成都)如图, 在 ABC 中, 按以下步骤作图: 分别以点 B 和 C 为圆心, 以大于1 2BC 的 长为半径作弧,两弧相交于点 M 和 N;作直

    3、线 MN 交 AC 于点 D,连接 BD若 AC6, AD2,则 BD 的长为( ) A2 B3 C4 D6 答案C解析根据线段垂直平分线的性质即可得到结论 解:由作图知,MN 是线段 BC 的垂直平分线, BDCD,AC6,AD2,BDCD4,故选:C 9(2020成都)如图,直线 l1l2l3,直线 AC 和 DF 被 l1,l2,l3所截,AB5,BC6, EF4,则 DE 的长为( ) A2 B3 C4 D10 3 答案D解析根据平行线分线段成比例定理得出比例式,代入求出即可 解:直线 l1l2l3,AB BC = DE EF,AB5,BC6,EF4, 5 6 = DE 4 ,DE=

    4、10 3 ,故选: D 4(2020 宜昌)如图,点 E,F,G,Q,H 在一条直线上,且 EF=GH,我们知道按如图所作的直 线 l 为线段 FG 的垂直平分线,下列说法正确的是( ). Al 是线段 EH 的垂直平分线 Bl 是线段 EQ 的垂直平分线 Cl 是线段 FH 的垂直平分线 DEH 是线段 l 的垂直平分线 答案A解析根据垂直平分线的定义,可得 l 经过 FG 的中点 O,EF=GH,EO=HO,l 是线段 EH 的垂直平分线. 8 (2020 凉山州) 点 C 是线段 AB 的中点, 点 D 是线段 AC 的三等分点 若线段 AB12cm, 则线段 BD 的长为( ) A10

    5、 cm B8 cm C10 cm 或 8 cm D2 cm 或 4 cm 答案C解析如答图,由中点及三点分点可知,BD628 或 BD6410,从而线 段 BD 的长为 10 cm 或 8 cm,故选 C ( 第 4 (2020广州)ABC 中,点 D,E 分别是ABC 的边 AB,AC 的中点,连接 DE,若C=68 ,则AED=( )A22 B68 C96 D112 答案B 解析本题考查了三角形中位线定理,由题目条件可知,DE 是ABC 的中位线,三角形的中 位线平行于第三边,所以 DE/BC,所以AED=C=68,因此本题选 B 10 (2020烟台)如图,点 G 为ABC 的重心,连接

    6、 CG,AG 并延长分别交 AB,BC 于点 E,F,连接 EF,若 AB4.4,AC3.4,BC3.6,则 EF 的长度为( ) A1.7 B1.8 C2.2 D2.4 【解析】点 G 为ABC 的重心,AEBE,BFCF,EF= 1 2 =1.7,故选:A 12 (2020淄博)如图,在ABC 中,AD,BE 分别是 BC,AC 边上的中线,且 ADBE, 垂足为点 F,设 BCa,ACb,ABc,则下列关系式中成立的是( ) Aa2+b25c2 Ba2+b24c2 Ca2+b23c2 Da2+b22c2 【解析】设 EFx,DFy, AD,BE 分别是 BC,AC 边上的中线, 点 F

    7、为ABC 的重心,AF= 1 2AC= 1 2b,BD= 1 2a, AF2DF2y,BF2EF2x, ADBE, 第 8 题答图 222 6 D2D1CBA AFBAFEBFD90, 在 RtAFB 中,4x2+4y2c2, 在 RtAEF 中,4x2+y2= 1 4b 2, 在 RtBFD 中,x2+4y2= 1 4a 2, +得 5x2+5y2= 1 4(a 2+b2) , 4x2+4y2= 1 5(a 2+b2) , 得 c2 1 5(a 2+b2)0, 即 a2+b25c2 故选:A 二、填空题二、填空题 16.(2020苏州)如图,在ABC中,已知2AB ,ADBC,垂足为D,2B

    8、DCD.若 E是AD的中点,则EC _. 答案1 解析本题考查了等腰三角形的判定和性质,三角形中位线定理,定理,取BD中点F,连接 EF,因为BD=2CD,所以FD=CD,因为AD BC ,所以EF=CE,因为E是AD的中点,所以EF为 ABD的中位线,所以EF=EC= 1 2AB=1. 12 (2020 镇江)如图,在 中, = 3 ,将 平移 5 个单位得到 111 , 点、 分别是、11 的中点, 的最小值等于 F 答案35 解析本题考查了中位线和平移的知识,取 AC 的中点 D,连接 PD,则 PD 1 2 BC15, DQ5,PQ 的最小值为 51535 18 (2020常州)如图,

    9、在ABC 中,B45 ,AB6 2,D、E 分别是 AB、AC 的中点, 连接 DE,在直线 DE 和直线 BC 上分别取点 F、G,连接 BF、DG若 BF3DG,且直 线 BF 与直线 DG 互相垂直,则 BG 的长为_ 答案2 或 4 解析本题考查了三角形中位线定理,相似三角形,等腰直角三角形三边关系等知识点,考 查了分类讨论思想如图,F 在射线 ED 上,过点 B 作 BMDF,过点 D 作 DNBC D 为中点,BD32,B45 ,BNDN3,BMDN3 BFDG, FFDH90 又FFDH90 FMBDNG,3 BFBM GDGN , 3 3 GN GN1,BG312 过点 D 作

    10、 DMBC,过 F 作 FNBC.DMBM3,1290 ,2390 13,又DMGBNF90 DMGBNF DGBF MGNF BF3DG NF3MGDM3 MG1 BGBMMG314 综上所述:BG2 或 4 A BC P Q A1 B1C1 图 1 图 2 15. (2020湘潭)如图, 点P是AOC的角平分线上一点,PDOA, 垂足为点D, 且3PD, 点M是射线OC上一动点,则PM的最小值为_ 答案3 解析本题考查了垂线段最短、角平分线的性质,根据垂线段最短可知当 PMOC 时,PM 最小,再根据角的平分线的性质,即可得出答案 根据垂线段最短可知:当 PMOC 时,PM最小, 当 PM

    11、OC 时, 又OP平分AOC,PDOA,3PD, PM=PD=3 故答案为:3 (2020本溪)15 (3 分)如图,在ABC 中,M,N 分别是 AB 和 AC 的中点,连接 MN, 点 E 是 CN 的中点,连接 ME 并延长,交 BC 的延长线于点 D若 BC4,则 CD 的长为 2 答案2 解析M,N 分别是 AB 和 AC 的中点, MN 是ABC 的中位线, MN= 1 2BC2,MNBC, NMED,MNEDCE, 点 E 是 CN 的中点, NECE, MNEDCE(AAS) , CDMN2 5(2020青海)如图 2,ABC 中,ABAC14cm,AB 的垂直平分线 MN 交

    12、 AC 于点 D, 且DBC 的周长是 24cm,则 BC_cm 答案10 解析MN 垂直平分 AB,ADBDDBC 的周长为 24,BDDCBC24,即 ACBC24BC24AC241410 三、解答题三、解答题 M N D C A B 图 2 25. (2020湘潭)阅读材料:三角形的三条中线必交于一点,这个交点称为三角形的重心 (1)特例感知:如图(一) ,已知边长为 2的等边ABC的重心为点O,求OBC与ABC 的面积 (2)性质探究:如图(二) ,已知ABC的重心为点O,请判断 OD OA 、 OBC ABC S S V V 是否都为定值? 如果是,分别求出这两个定值:如果不是,请说

    13、明理由 (3)性质应用:如图(三) ,在正方形ABCD中,点E是CD的中点,连接BE交对角线AC 于点M 若正方形ABCD的边长为 4,求EM的长度; 若 1 CME S ,求正方形ABCD的面积 解析(1)连接 DE,利用相似三角形证明 1 2 OD AO ,运用勾股定理求出 AD 的长,运用三 角形面积公式求解即可; (2)根据(1)的证明可求解; (3)证明CMEABM得 1 2 EM BM ,再运用勾股定理求出 BE的长即可解决问题; 分别求出 SBMC 和 SABM 即可. 答案(1)连接 DE,如图, 点 O是ABC的重心, AD,BE是BC,AC 边上的中线, DE ,为BC,A

    14、C边上的中点, DE为ABC的中位线, /DEAB, 1 2 DEAB, ODEOABVV, 1 2 ODDE OAAB , 2AB,1BD 3AD, 3 3 OD , 1133 2 2233 OBC SBCOD V 11 233 22 ABC SBC AD V ; (2)由(1)可知, 1 2 OD OA 是定值; 1 1 2 1 3 2 OBC ABC BC OD SOD SAD BC AD V V 是定值; (3)四边形 ABCD是正方形, / /CDAB ,4ABBCCD, CMEAMBV: V EMCE BMAB E 为 CD的中点, 1 2 2 CECD 22 2 5BEBCCE 1 2 EM BM 1 3 EM BE ,即 2 5 3 EM ; 1 CME S V ,且 1 2 ME BM 2 BMC S V , 1 2 ME BM , 2 1 4 CME AMB SME SBM V V , 4S4 AMBCME S VV , 246 ABCBMCABM SSS VVV , 又 ADCABC SS 6 ADC S V 正方形 ABCD的面积为:6+6=12

    展开阅读全文
    提示  163文库所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
    关于本文
    本文标题:知识点22线段垂直平分线、角平分线、中位线(2020年全国各地中考数学真题分类汇编).docx
    链接地址:https://www.163wenku.com/p-709804.html
    四川天地人教育
         内容提供者      个人认证 实名认证
    相关资源 更多

    Copyright@ 2017-2037 Www.163WenKu.Com  网站版权所有  |  资源地图   
    IPC备案号:蜀ICP备2021032737号  | 川公网安备 51099002000191号


    侵权投诉QQ:3464097650  资料上传QQ:3464097650
       


    【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。

    163文库