冀教版-七年级数学下册-第十一章-因式分解-知识点检测习题+小结与复习-章节合集(巩固提高典型题型)课件.ppt
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《冀教版-七年级数学下册-第十一章-因式分解-知识点检测习题+小结与复习-章节合集(巩固提高典型题型)课件.ppt》由用户(ziliao2023)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 冀教版 七年 级数 下册 第十一 因式分解 知识点 检测 习题 小结 复习 章节 巩固 提高 典型 题型 课件 下载 _七年级下册_冀教版(2024)_数学_初中
- 资源描述:
-
1、七年级数学下册(JJ)11.1 因式分解第十一章 因式分解导入新课讲授新课当堂练习课堂小结学练优七年级数学下(JJ)教学课件学习目标1.解掌握因式分解的意义,会判断一个变形是否为因式分解.(重点)2.理解因式分解与整式乘法之间的联系与区别.(难点)导入新课导入新课复习引入问题1:21能被哪些数整除?1,3,7,21.问题2:你是怎样想到的?因为21=121=37.思考:既然有些数能分解因数,那么类似地,有些多项式可以分解成几个整式的积吗?可以.探究引入完成下列题目:x(x-2)=_(x+y)(x-y)=_(x+1)2=_x2-2xx2-y2x2+2x+1根据左空,解决下列问题:x2-2x=()
2、()x2-y2=()()x2+2x+1=()2xx-2x+yx-yx+1讲授新课讲授新课因式分解的概念一联系:左右两式是同一多项式的不同表现形式.区别:左边一栏是多项式的乘法,右边一栏是把多项式化成了几个整式的积,他们的运算是相反的.问题2:右边一栏表示的正是多项式的因式分解,你能根据我们的分析说出什么是因式分解吗?问题1:观察同一行中,左右两边的等式有什么区别和联系?总结归纳像这样,把一个多项式分解成几个整式乘积的形式,叫做多项式的因式分解,也叫做将多项式分解因式.其中,每个整式都叫做这个多项式的因式.判断下列各式从左到右的变形中,是否为因式分解:辩一辩 A.x(ab)=axbx B.x21
3、+y2=(x1)(x+1)+y2 C.y21=(y+1)(y1)D.ax+by+c=x(a+b)+c E.2a3b=a22ab F.(x+3)(x3)=x29提示:判定一个变形是因式分解的条件:(1)左边是多项式(2)右边是积的形式.(3)右边的因式全是整式.因式分解与整式乘法的关系二问题:因式分解与整式乘法的关系是什么?多项式 (整式)(整式)(整式)两者互为逆运算.因式分解整式乘法例 若多项式x2+ax+b分解因式的结果为a(x2)(x+3),求a,b的值.解:因为x2+ax+b=a(x2)(x+3)=ax2+ax-6a.所以a=1,b=6a=6,典例精析方法归纳:对于此类问题,掌握因式分
4、解与整式乘法为互逆运算是解题关键,应先把分解因式后的结果乘开,再与多项式的各项系数对应比较即可.下列多项式中,分解因式的结果为-(x+y)(x-y)的是()Ax2y2 Bx2+y2Cx2+y2 Dx2y2B练一练当堂练习当堂练习2.下列从左到右的变形中,是因式分解的有_.24x2y=4x6xy (x+5)(x5)=x225 x2+2x3=(x+3)(x1)9x26x+1=3x(x2)+1 x2+1=x(x+)3xn+2+27xn=3xn(x2+9)1.下列各式中从左到右的变形属于分解因式的是()A.a(a+b-1)=a2+ab-a B.a2-a-2=aa-1)-2C.-4a2+9b2=(-2a
5、+3b)(2a+3b)D.C3.把多项式x2+4mx+5因式分解得(x+5)(x+n),则m+n的值为解析:由题意可得 x2+4mx+5=(x+5)(x+n)=x2+(n+5)x+5n,5n=5,4m=n+5 解得n=1,m=,m+n=1+=.525232324.若多项式x4+mx3+nx16含有因式(x2)和(x1),求mn的值.解:因为x4+mx3+nx16的最高次数是4,所以可设x4+mx3+nx16=(x-1)(x-2)(x2+ax+b),则x4+mx3+nx-16=x4+(a-3)x3+(b-3a+2)x2+(2a-3b)x+2b 比较系数得 2b=-16,b-3a+2=0,a-3=
6、m,2a-3b=n 解得a=-2,b=-8,m=-5,n=20.所以mn=520=1005.甲、乙两个同学分解因式x2+ax+b时,甲看错了b,分解结果为(x+2)(x+4);乙看错了a,分解结果为(x+1)(x+9),求a+b的值.解:分解因式甲看错了b,但a是正确的,其分解结果为x2+ax+b=(x+2)(x+4)=x2+6x+8,所以a=6,同理,乙看错了a,但b是正确的,分解结果为x2+ax+b=(x+1)(x+9)=x2+10 x+9,所以b=9,因此a+b=15课堂小结课堂小结因式分解定义:把一个多项式分解成几个整式_的形式,叫做多项式的因式分解,也叫将多项式_.其中,每个整式叫做
7、这个多项式的_.与多项式乘法运算的关系 的变形过程.前者是把一个多项式化为几个整式的_.,后者是把几个整式的_化为一个_.乘积 分解因式 因式 相反 多项式 乘积 乘积 七年级数学下册(JJ)导入新课讲授新课当堂练习课堂小结学练优七年级数学下(JJ)教学课件11.2 提公因式法第十一章 因式分解学习目标1.能确定多项式的公因式.(重、难点)2.能熟练运用提公因式法把多项式因式分解.(重点)导入新课导入新课问题引入问题1:多项式ma+mb+mc有哪几项?问题2:每一项的因式都分别有哪些?问题3:这些项中有没有公共的因式,若有,公共的因 式是什么?ma,mb,mc依次为m,a和m,b和m,c有,为
8、m问题4:请说出多项式ab2-2a2b中各项的公共的因式.a,b,ab相同因式p这个多项式有什么特点?pa+pb+pc一般地,多项式的各项都含有的因式,叫做这个多项式各项的公因式,简称多项式的公因式.讲授新课讲授新课确定公因式一例 找 3x 2 6 xy 的公因式.系数:最大公约数3字母:相同的字母x 所以公因式是3x.指数:相同字母的最低次幂1典例精析u正确找出多项式各项公因式的关键是:1.定系数:公因式的系数是多项式各项系数的最大公 约数.2.定字母:字母取多项式各项中都含有的相同的字母.3.定指数:相同字母的指数取各项中最小的一个,即 字母最低次幂.要点归纳写出下列多项式的公因式.(1)
9、x-x2;(2)abc+2a;(3)abc-b2+2ab;(4)a2+ax2;练一练xaba提公因式法分解因式二问题:ma+mb+mc=m()ab2-2a2b=ab()(提示,逆用乘法分配律)概念学习逆用乘法对加法的分配律,可以把公因式写在括号外边,作为积的一个因式,这种将多项式分解因式的方法,叫做提公因式法.a+b+cb-2a 思考:以下是三名同学对多项式2x2+4x分解因式的结果:(1)2x2+4x=2(x2+2x);(2)2x2+4x=x(2x+4);(3)2x2+4x=2x(x+2).第几位同学的结果是正确的?用提公因式法分解因式应注意哪些问题呢?做乘法运算来检验易得第3位同学的结果是
10、正确的.例2:把下列多项式分解因式:(1)-3x2+6xy-3xz;(2)3a3b+9a2b2-6a2b.解:(1)-3x2+6xy-3xz=(-3x)x+(-3x)(-2y)+(-3x)z =-3x(x-2y+z).方法归纳:用提公因式法分解因式应注意:(1)如果多项式的第一项系数是负数,一般要先提出负因数,保证括号内首项为正.(2)公因式的系数是负号时,提公因式后各项要变号.(2)3a3b+9a2b2-6a2b=3a2ba+3a2b3b-3a2b2 =3a2b(a+3b-2)例3:把分解因式:2a(b+c)-5(b+c).解:2a(b+c)-5(b+c)=(b+c)2a+(b+c)5 =(
11、b+c)(2a-5).方法归纳:公因式可以是数字,字母,单项式,公因式可以是数字,字母,单项式,还可以是多项式还可以是多项式.提公因式法步骤(分两步):第一步:找出公因式;第二步:提取公因式,即将多项式化为两个因式的乘积.注意:公因式既可以是一个单项式的形式,也可以是一个多项式的形式.运用提公因式法分解因式常常运用到整体思想,整体思想是数学中一种重要而且常用的思想方法.要点归纳当堂练习当堂练习1.下列多项式:4a2b(ab)6ab2(ba)中,各项的公因式是()A4ab B2abCab(ab)D2ab(ab)D2.多项式8xmyn112x3myn的公因式是()AxmynBxmyn1C4xmyn
12、D4xmyn1解析:(1)公因式的系数是多项式各项系数的最大 公约数,为4;(2)字母取各项都含有的相同字母,为xy;(3)相同字母的指数取次数最低的,x为m次,y为n-1次;多项式的公因式是4xmyn1D3.把多项式4a3+4a216a分解因式()Aa(4a24a+16)Ba(4a2+4a16)C4(a3a2+4a)D4a(a2a+4)D4.若ab=3,a2b=5,则a2b2ab2的值是()A15 B15 C2 D8解析:因为ab=3,a2b=5,所以a2b2ab2=ab(a2b)=35=15A5.计算(3)m+2(3)m1,得()A3m1 B(3)m1C(3)m1 D(3)m解析:(3)m
13、+2(3)m1 =(3)m1(3+2)=(3)m1C系数:各项系数的_.课堂小结课堂小结提公因式法一般地,多项式的各项都含有的因式,叫做这个多项式各项的_,简称多项式的公因式.确定公因式字母:各项_的字母相同字母的指数取次数_.定义:逆用乘法对加法的_律,可以把_写在括号外边,作为积的一个_,这种将多项式分解因式的方法,叫做提公因式法.最大公约数 相同 最低的 分配公因式公因式因式导入新课讲授新课当堂练习课堂小结学练优七年级数学下(JJ)教学课件第1课时 平方差公式 11.3 公式法第十一章 因式分解学习目标1.能说出平方差公式的结构特征(重点)2.能较熟练地应用平方差公式分解因式(难点)导入
14、新课导入新课复习引入问题1:上节课我们学习了提公因式法分解因式,如2x+xy-xz=x(2+y-z).如果一个多项式的各项不具备公因式,是否就不能因式分解了呢?当然不是,还要寻找其他方法.问题2:观察乘法公式:(a+b)(a-b)=a2-b2.判断一下,把这个式子从左边到右边反过来,是否是因式分解?是,式子反过来就是a2-b2=(a+b)(a-b).左边是一个多项式,右边是几个整式的乘积,所以是分解因式.问题:多项式a2-b2有什么特点?你能将它分解因式吗?是a,b两数的平方差的形式.)(baba-+=22ba-)(22bababa-+=-整式乘法因式分解因式分解平方差公式:讲授新课讲授新课用
展开阅读全文
链接地址:https://www.163wenku.com/p-7028403.html