多元线性回归与多元逐步回归.ppt
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《多元线性回归与多元逐步回归.ppt》由用户(刘殿科)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 多元 线性 回归 逐步回归
- 资源描述:
-
1、多元线性回归与多多元线性回归与多元逐步回归元逐步回归一个应变量与多个自变量间的关系儿童身高与年龄、性别的关系儿童身高与年龄、性别的关系肺活量与年龄、性别、身高、体重肺活量与年龄、性别、身高、体重以及胸围的呼吸差等因素的关系以及胸围的呼吸差等因素的关系多元线性回归如构成线性依存关系 01122kkYbb Xb Xb XYYY常数项,表示当所有自变量为0时应变量Y的总体平均值的估计值 表示除以外的其它自变量固定不变的情况下,每改变一个测量单位时所引起的应变量Y的平均改变量 bj为偏回归系数partial regression coefficient)两个自变量与应变量的散点图两个自变量与应变量的散
2、点图两个自变量与应变量的拟合面两个自变量与应变量的拟合面bj 为为 xj方向的斜率方向的斜率1.求偏回归系数求偏回归系数bj及及b0 根据最小二乘法根据最小二乘法(method of least square)(method of least square)原理求出原理求出b bj j,即即21SSniiiYY残 差得到得到bj)(22110ppxbxbxbyb例例11.1 2011.1 20名糖尿病人的血糖、胰岛素及生长素的测定值列于下表名糖尿病人的血糖、胰岛素及生长素的测定值列于下表中,试建立血糖对于胰岛素及生长素的二元线性回归方程中,试建立血糖对于胰岛素及生长素的二元线性回归方程。对于本
3、例有对于本例有:2201 12211()nniiiiiSSYYYbb xb x残差01122()bYb xb x采用最小二乘法即可求出常数项采用最小二乘法即可求出常数项b b0 0和偏回归系数和偏回归系数b b1 1、b b2 2。其中其中对表对表11-211-2的数据资料由的数据资料由SASSAS统计软件可得到如下统计软件可得到如下表表11-311-3的主要结果。的主要结果。由此得到回归方程为由此得到回归方程为1217.011 0.4060.098YXX二、回归方程的假设检验二、回归方程的假设检验其中:自由度为总n1,回归k,剩余nk1 SSYYiiNTotal()12SSYYiiNmode
4、l()12SSYYiiNierror()12X2X1YModel SSTotal SSResidual SS由表由表11-4可知,可知,F21.54,P0.05。从而,拒绝。从而,拒绝H0,可以认为,可以认为和和不全为不全为0,即所求回归方程有统计学意义。,即所求回归方程有统计学意义。H H0 0:H H1 1:和和不全为不全为0 0 对表对表11-311-3的数据资料,由的数据资料,由SASSAS统计软件可得到如下表统计软件可得到如下表11-411-4的模型检验结果。的模型检验结果。0:0:10jjHH;j=1,2,k之中,之中,U U 为为X Xj j 的偏回归平方和的偏回归平方和,即即U
5、 U=SS SS回归回归SSSS回归回归(-(-j j)Fj服从F(1,n-k-1)分布 F F检验表检验表方程内方程内自变量自变量平方和平方和F FP PSSSS回归回归SSSS回归回归-SSSS回归回归(-j)(-j)SSSS残差残差X1,X2X1,X2116.6116.646.02546.025X2X266.27566.27550.35250.35218.59818.5980.00.050.05在在 0.050.05水平上,可以认为胰岛素对血糖的线性回归关系有统计学意义,水平上,可以认为胰岛素对血糖的线性回归关系有统计学意义,而生长素对血糖的线性回归关系无统计学意义。所以应剔除而生长素对
6、血糖的线性回归关系无统计学意义。所以应剔除X X2 2,只建立,只建立X X1 1与与Y Y的的线性回归方程。线性回归方程。j=1,2,k0:0:10jjHH;jjbjbSbt14.31bt 20.84bt,P=0.0005;在在0.050.05水平下,认为血糖与胰岛素的线性回归关系水平下,认为血糖与胰岛素的线性回归关系有统计学意义,而与生长素的线性回归关系无统计学意义。有统计学意义,而与生长素的线性回归关系无统计学意义。结论与结论与 F F 检验一致检验一致。,。式中,式中,S Sj j及及S Sy y 分别为自变量分别为自变量X Xj j 及因变量及因变量Y Y 的标准差。的标准差。可以利
展开阅读全文