新人教版九年级数学上册全册教案.doc
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《新人教版九年级数学上册全册教案.doc》由用户(清风明月心)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 新人 九年级 数学 上册 教案 下载 _九年级上册_人教版(2024)_数学_初中
- 资源描述:
-
1、第二十一章 二次根式 教材内容 1本单元教学的主要内容: 二次根式的概念;二次根式的加减;二次根式的乘除;最简二次根式 2本单元在教材中的地位和作用: 二次根式是在学完了八年级下册第十七章反比例正函数、第十八章勾股定理及其应用等内容的基础之上继续学习的,它也是今后学习其他数学知识的基础 教学目标 1知识与技能 (1)理解二次根式的概念 (2)理解(a0)是一个非负数,()2=a(a0),=a(a0) (3)掌握(a0,b0),=;=(a0,b0),=(a0,b0) (4)了解最简二次根式的概念并灵活运用它们对二次根式进行加减 2过程与方法 (1)先提出问题,让学生探讨、分析问题,师生共同归纳,
2、得出概念再对概念的内涵进行分析,得出几个重要结论,并运用这些重要结论进行二次根式的计算和化简 (2)用具体数据探究规律,用不完全归纳法得出二次根式的乘(除)法规定,并运用规定进行计算 (3)利用逆向思维,得出二次根式的乘(除)法规定的逆向等式并运用它进行化简 (4)通过分析前面的计算和化简结果,抓住它们的共同特点,给出最简二次根式的概念利用最简二次根式的概念,来对相同的二次根式进行合并,达到对二次根式进行计算和化简的目的 3情感、态度与价值观 通过本单元的学习培养学生:利用规定准确计算和化简的严谨的科学精神,经过探索二次根式的重要结论,二次根式的乘除规定,发展学生观察、分析、发现问题的能力 教
3、学重点 1二次根式(a0)的内涵(a0)是一个非负数;()2a(a0);=a(a0)及其运用 2二次根式乘除法的规定及其运用 3最简二次根式的概念 4二次根式的加减运算 教学难点 1对(a0)是一个非负数的理解;对等式()2a(a0)及=a(a0)的理解及应用 2二次根式的乘法、除法的条件限制 3利用最简二次根式的概念把一个二次根式化成最简二次根式 教学关键 1潜移默化地培养学生从具体到一般的推理能力,突出重点,突破难点 2培养学生利用二次根式的规定和重要结论进行准确计算的能力,培养学生一丝不苟的科学精神 单元课时划分 本单元教学时间约需11课时,具体分配如下: 211 二次根式 3课时 21
4、2 二次根式的乘法 3课时 213 二次根式的加减 3课时 教学活动、习题课、小结 2课时211 二次根式第一课时 教学内容 二次根式的概念及其运用 教学目标 理解二次根式的概念,并利用(a0)的意义解答具体题目 提出问题,根据问题给出概念,应用概念解决实际问题 教学重难点关键 1重点:形如(a0)的式子叫做二次根式的概念; 2难点与关键:利用“(a0)”解决具体问题 教学过程 一、复习引入 (学生活动)请同学们独立完成下列三个问题: 问题1:已知反比例函数y=,那么它的图象在第一象限横、纵坐标相等的点的坐标是_问题2:如图,在直角三角形ABC中,AC=3,BC=1,C=90,那么AB边的长是
5、_ 问题3:甲射击6次,各次击中的环数如下:8、7、9、9、7、8,那么甲这次射击的方差是S2,那么S=_ 二、探索新知 很明显、,都是一些正数的算术平方根像这样一些正数的算术平方根的式子,我们就把它称二次根式因此,一般地,我们把形如(a0)的式子叫做二次根式,“”称为二次根号 (学生活动)议一议: 1-1有算术平方根吗? 20的算术平方根是多少? 3当a0)、-、(x0,y0) 例2当x是多少时,在实数范围内有意义? 三、巩固练习 教材P练习1、2、3 四、应用拓展 例3当x是多少时,+在实数范围内有意义? 例4(1)已知y=+5,求的值(2)若+=0,求a2004+b2004的值 五、归纳
6、小结(学生活动,老师点评) 本节课要掌握: 1形如(a0)的式子叫做二次根式,“”称为二次根号 2要使二次根式在实数范围内有意义,必须满足被开方数是非负数 六、布置作业 1教材P8复习巩固1、综合应用5 21.1 二次根式(2)第二课时 教学内容 1(a0)是一个非负数; 2()2=a(a0) 教学目标 理解(a0)是一个非负数和()2=a(a0),并利用它们进行计算和化简 通过复习二次根式的概念,用逻辑推理的方法推出(a0)是一个非负数,用具体数据结合算术平方根的意义导出()2=a(a0);最后运用结论严谨解题 教学重难点关键 1重点:(a0)是一个非负数;()2=a(a0)及其运用 2难点
7、、关键:用分类思想的方法导出(a0)是一个非负数;用探究的方法导出()2=a(a0) 教学过程 一、复习引入 1什么叫二次根式? 2当a0时,叫什么?当a0时,有意义吗? 二、探究新知 议一议:(学生分组讨论,提问解答) (a0)是一个什么数呢? 老师点评:根据学生讨论和上面的练习,我们可以得出 (a0)是一个非负数 做一做:根据算术平方根的意义填空:()2=_;()2=_;()2=_;()2=_;()2=_;()2=_;()2=_ ()2=a(a0) 例1 计算 1()2 2(3)2 3()2 4()2 三、巩固练习 计算下列各式的值:()2 ()2 ()2 ()2 (4)2 四、应用拓展
8、例2 计算1()2(x0) 2()2 3()2 4()2 例3在实数范围内分解下列因式: (1)x2-3 (2)x4-4 (3) 2x2-3 五、归纳小结 本节课应掌握: 1(a0)是一个非负数; 2()2=a(a0);反之:a=()2(a0) 六、布置作业 1教材P8 复习巩固2(1)、(2) P9 7 21.1 二次根式(3)第三课时 教学内容 a(a0) 教学目标 理解=a(a0)并利用它进行计算和化简 通过具体数据的解答,探究=a(a0),并利用这个结论解决具体问题 教学重难点关键 1重点:a(a0) 2难点:探究结论 3关键:讲清a0时,a才成立 教学过程 一、复习引入 老师口述并板
9、收上两节课的重要内容; 1形如(a0)的式子叫做二次根式; 2(a0)是一个非负数; 3()2a(a0) 那么,我们猜想当a0时,=a是否也成立呢?下面我们就来探究这个问题 二、探究新知 (学生活动)填空: =_;=_;=_; =_;=_;=_ 因此,一般地:=a(a0) 例1 化简 (1) (2) (3) (4) 三、巩固练习 教材P7练习2 四、应用拓展 例2 填空:当a0时,=_;当aa,则a可以是什么数? 例3当x2,化简- 五、归纳小结 本节课应掌握:=a(a0)及其运用,同时理解当a0时,a的应用拓展 六、布置作业 1教材P8习题211 3、4、6、8212 二次根式的乘除第一课时
10、 教学内容 (a0,b0),反之=(a0,b0)及其运用 教学目标 理解(a0,b0),=(a0,b0),并利用它们进行计算和化简 由具体数据,发现规律,导出(a0,b0)并运用它进行计算;利用逆向思维,得出=(a0,b0)并运用它进行解题和化简 教学重难点关键 重点:(a0,b0),=(a0,b0)及它们的运用 难点:发现规律,导出(a0,b0) 关键:要讲清(a0,b、0),反过来=(a0,b0)及利用它们进行计算和化简 教学目标 理解=(a0,b0)和=(a0,b0)及利用它们进行运算 利用具体数据,通过学生练习活动,发现规律,归纳出除法规定,并用逆向思维写出逆向等式及利用它们进行计算和
11、化简 教学重难点关键 1重点:理解=(a0,b0),=(a0,b0)及利用它们进行计算和化简 2难点关键:发现规律,归纳出二次根式的除法规定 教学过程 一、复习引入 (学生活动)请同学们完成下列各题: 1写出二次根式的乘法规定及逆向等式 2填空 (1)=_,=_; (2)=_,=_; (3)=_,=_; (4)=_,=_规律:_;_;_;_ 3利用计算器计算填空: (1)=_,(2)=_,(3)=_,(4)=_ 规律:_;_;_;_。 每组推荐一名学生上台阐述运算结果 (老师点评) 二、探索新知 刚才同学们都练习都很好,上台的同学也回答得十分准确,根据大家的练习和回答,我们可以得到: 一般地,
12、对二次根式的除法规定:=(a0,b0),反过来,=(a0,b0) 下面我们利用这个规定来计算和化简一些题目 例1计算:(1) (2) (3) (4) 分析:上面4小题利用=(a0,b0)便可直接得出答案 例2化简: (1) (2) (3) (4) 分析:直接利用=(a0,b0)就可以达到化简之目的 三、巩固练习 教材P14 练习1 四、应用拓展 例3已知,且x为偶数,求(1+x)的值 五、归纳小结 本节课要掌握=(a0,b0)和=(a0,b0)及其运用 六、布置作业 1教材P15 习题212 2、7、8、9 21.2 二次根式的乘除(3)第三课时 教学内容 最简二次根式的概念及利用最简二次根式
13、的概念进行二次根式的化简运算 教学目标 理解最简二次根式的概念,并运用它把不是最简二次根式的化成最简二次根式 通过计算或化简的结果来提炼出最简二次根式的概念,并根据它的特点来检验最后结果是否满足最简二次根式的要求 重难点关键 1重点:最简二次根式的运用 2难点关键:会判断这个二次根式是否是最简二次根式 教学过程 一、复习引入 (学生活动)请同学们完成下列各题(请三位同学上台板书) 1计算(1),(2),(3) 老师点评:=,=,= 2现在我们来看本章引言中的问题:如果两个电视塔的高分别是h1km,h2km,那么它们的传播半径的比是_ 它们的比是 二、探索新知 观察上面计算题1的最后结果,可以发
展开阅读全文