书签 分享 收藏 举报 版权申诉 / 3
上传文档赚钱

类型人教版九年级数学上册22.2.1《二次函数与一元二次方程》教案.docx

  • 上传人(卖家):副主任
  • 文档编号:6927183
  • 上传时间:2023-08-22
  • 格式:DOCX
  • 页数:3
  • 大小:74.39KB
  • 【下载声明】
    1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
    2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
    3. 本页资料《人教版九年级数学上册22.2.1《二次函数与一元二次方程》教案.docx》由用户(副主任)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
    4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
    5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
    配套讲稿:

    如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。

    特殊限制:

    部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。

    关 键  词:
    二次函数与一元二次方程 人教版 九年级 数学 上册 22.2 二次 函数 一元 二次方程 教案 下载 _九年级上册_人教版(2024)_数学_初中
    资源描述:

    1、二次函数与一元二次方程教案一、教学目标(一)知识与技能:1.总结出二次函数与x轴交点的个数与一元二次方程的根的个数之间的关系,表述何时方程有两个不等的实根、两个相等的实数和没有实根;2.会利用二次函数的图象求一元二次方程的近似解.(二)过程与方法:经历探索二次函数与一元二次方程的关系的过程,体会方程与函数之间的联系.(三)情感态度与价值观:通过观察二次函数图象与x轴的交点个数,讨论一元二次方程根的情况,进一步体会数形结合思想.二、教学重点、难点重点:方程与函数之间的联系,会利用二次函数的图象求一元二次方程的近似解.难点:二次函数与x轴交点的个数与一元二次方程的根的个数之间的关系.三、教学过程复

    2、习引入1.二次函数的一般式:_,_是自变量,_是_的函数. 二次函数与一元二次方程有什么联系?当y=0时,ax2+bx+c=0.2.一元二次方程ax2+bx+c=0的根的情况可由什么确定? b2-4ac0 方程有两个不等的实数根; b2-4ac=0 方程有两个相等的实数根; b2-4ac0 方程无实数根.问题 如图,以40m/s的速度将小球沿与地面成30角的方向击出时,小球的飞行路线将是一条抛物线,如果不考虑空气阻力,球的飞行高度h(单位:m)与飞行时间t(单位:s)之间具有函数关系:h=20t-5t2.考虑以下问题:(1)小球的飞行高度能否达到15m?如果能,需要多少飞行时间?(2)小球的飞

    3、行高度能否达到20m?如果能,需要多少飞行时间?(3)小球的飞行高度能否达到20.5m?为什么?(4)小球从飞出到落地要用多少时间?分析:由于小球的飞行高度h与飞行时间t有函数关系h=20t-5t2,所以可以将问题中h的值代入函数解析式,得到关于t的一元二次方程,如果方程有合乎实际的解,则说明小球的飞行高度可以达到问题中h的值;否则,说明小球的飞行高度不能达到问题中h的值.解:(1)当h=15时,20t-5t2=15 整理得,t2-4t+3=0 解得,t1=1,t2=3因此,当小球飞行1s和3s时,它的飞行高度为15m.(2)当h=20时,20t-5t2=20 整理得,t2-4t+4=0 解得

    4、,t1=t2=2因此,当小球飞行2s时,它的飞行高度为20m.(3)当h=20.5时,20t-5t2=20.5 整理得,t2-4t+4.1=0因为(-4)2-44.1=-0.40,所以方程无实数根.这就是说,小球的飞行高度达不到20.5m.(4)小球飞出时和落地时的高度h都为0m,因此有20t-5t2=0 整理得,t2-4t=0 解得,t1=0,t2=4因此,当小球飞行0s和4s时,它的高度为0m.这表明小球从飞出到落地要用4s. h=20t-5t220t-5t2=15,20t-5t2=20,20t-5t2=20.5,20t-5t2=0. 从上面可以看出,二次函数与一元二次方程联系密切.例如,

    5、已知二次函数y=-x2+4x的值为3,求自变量x的值,可以看作解一元二次方程-x2+4x=3(即x2-4x+3=0).反过来,解方程x2-4x+3=0又可以看作已知二次函数y=x2-4x+3的值为0,求自变量x的值. 已知二次函数的值,求自变量x的值. 解一元二次方程思考下列二次函数的图象与x轴有公共点吗?如果有,公共点的横坐标是多少?当x取公共点的横坐标时,函数值是多少?由此,你能得出相应的一元二次方程的根吗?(1) y=x2+x-2;(2) y=x2-6x+9;(3) y=x2-x+1(1)抛物线y=x2+x-2与x轴有两个公共点,它们的横坐标是-2,1.当x取公共点的横坐标时,函数值是0

    6、.由此得出方程x2+x-2=0的根是-2,1.(2)抛物线y=x2-6x+9与x轴有一个公共点,这点的横坐标是3.当x=3时,函数值是0.由此得出方程x2-6x+9=0有两个相等的实数根3.(3)抛物线y=x2-x+1与x轴没有公共点.由此可知,方程x2-x+1=0没有实数根.反过来,由一元二次方程的根的情况,也可以确定相应的二次函数图象与x轴的位置关系.归纳一般地,从二次函数y=ax2+bx+c的图象可得如下结论.(1)如果抛物线y=ax2+bx+c与x轴有公共点,公共点的横坐标是x0,那么当x=x0时,函数的值是0,因此x=x0就是方程ax2+bx+c=0的一个根.(2)二次函数y=ax2

    7、+bx+c的图象与x轴的位置关系有三种:没有公共点,有一个公共点,有两个公共点.这对应着一元二次方程ax2+bx+c=0的根的三种情况:没有实数根,有两个相等的实数根,有两个不等的实数根.例1 利用函数图象求方程x2-2x-2=0的实数根(结果保留小数点后一位).解:画出函数y=x2-2x-2的图象,它与x轴的公共点的横坐标大约是-0.7,2.7.所以方程x2-2x-2=0的实数根为x1-0.7,x22.7我们还可以通过不断缩小根所在的范围估计一元二次方程的根.课堂小结1.本节课你有哪些收获?2.还有没解决的问题吗?四、教学反思教学过程中,强调学生自主探索和合作交流,通过观察二次函数与x轴的交点个数,讨论一元二次方程的根的情况,体会知识间的相互转化和相互联系.

    展开阅读全文
    提示  163文库所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
    关于本文
    本文标题:人教版九年级数学上册22.2.1《二次函数与一元二次方程》教案.docx
    链接地址:https://www.163wenku.com/p-6927183.html

    Copyright@ 2017-2037 Www.163WenKu.Com  网站版权所有  |  资源地图   
    IPC备案号:蜀ICP备2021032737号  | 川公网安备 51099002000191号


    侵权投诉QQ:3464097650  资料上传QQ:3464097650
       


    【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。

    163文库