人教版九年级数学上册22.1.5《二次函数y=ax2+bx+c的图象和性质》教案.docx
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《人教版九年级数学上册22.1.5《二次函数y=ax2+bx+c的图象和性质》教案.docx》由用户(副主任)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 二次函数y=ax2+bx+c的图象和性质 人教版 九年级 数学 上册 22.1 二次 函数 ax2 bx 图象 性质 教案 下载 _九年级上册_人教版(2024)_数学_初中
- 资源描述:
-
1、二次函数y=ax2+bx+c的图象和性质教案一、教学目标(一)知识与技能:1.能通过配方把二次函数y=ax2+bx+c化成y=a(x-h)2+k的形式,从而确定开口方向、对称轴和顶点坐标;2.会利用对称性画出二次函数的图象.(二)过程与方法:经历求二次函数y=ax2+bx+c的对称轴和顶点坐标的探究过程,渗透配方法和数形结合的思想方法.(三)情感态度与价值观:让学生亲自体会到学习数学的价值,从而提高学生学习数学的兴趣,并获得成功感.二、教学重点、难点重点:用配方法确定抛物线的顶点坐标和对称轴.难点:二次函数y=ax2+bx+c的图像及性质.三、教学过程知识回顾1.一般地,抛物线y=a(x-h)
2、2+k与y=ax2的_相同,_不同. 2.抛物线y=a(x-h)2+k有如下特点:(1)当a0时, 开口_,当a0时,开口_;(2)对称轴是_;(3)顶点是_.3.抛物线y=-4(x+2)2-5的开口_,对称轴是直线_,顶点坐标为_;它可由抛物线y=-4x2向_(填“左”或“右”)平移_个单位,再向_(填“上”或“下”)平移_个单位得到;当x=_时,y有最_值,其值为_;当_时,y随着x的增大而增大,当_时,y随着x的增大而减小. 二次函数的图象是有什么特点?它与我们已经作过的二次函数的图象有什么关系? 我们知道,像这样的函数,容易确定相应抛物线的顶点为(h,k),二次函数也能化成这样的形式吗
3、?探究新知1.配方法:怎样把转化成的形式?解:(1)“提”:提出二次项系数;(2)“配”:括号内配成完全平方式;(3)“化”:化成顶点式.2.直接画二次函数的图象.抛物线的顶点是(6,3),对称轴是直线x=6.解:利用图象的对称性列表:描点画图,得到的图象. 在对称轴的左侧,抛物线从左到右下降;在对称轴的右侧,抛物线从左到右上升. 也就是说,当x6时,y随x的增大而减小;当x6时,y随x的增大而增大.探究你能用前面的方法讨论二次函数的图象和性质吗?开口向下顶点是(-1,3)对称轴是直线x=-1当x-1时,y随x的增大而增大;当x-1时,y随x的增大而减小.一般地,二次函数可以通过配方化成y=a(x-h)2+k的形式(顶点式).对称轴是直线x=-顶点是(-,)如果a0时,那么当x=-时,y最小值=如果a0时,那么当x=-时,y最大值=如果a0,当x-时,y随x的增大而减小,当x-时,y随x的增大而增大;如果a0,当x-时,y随x的增大而增大,当x-时,y随x的增大而减小.练习写出下列抛物线的开口方向、对称轴和顶点:课堂小结1.本节课你有哪些收获?2.还有没解决的问题吗?四、教学反思教学过程中,强调学生自主探索和合作交流,在操作中探究二次函数yax2bxc的图象与性质,体会数学建模的数形结合思想方法.
展开阅读全文