第3章-静电场及其边值问题的解法剖析课件.ppt
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《第3章-静电场及其边值问题的解法剖析课件.ppt》由用户(刘殿科)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 静电场 及其 边值问题 解法 剖析 课件
- 资源描述:
-
1、第第3章章 静电场及其边值问题解法静电场及其边值问题解法The Electrostatic Field and Solution Techniques for Boundary Value Problems 主要内容主要内容静电场边值问题、惟一性定理静电场边值问题、惟一性定理镜像法镜像法分离变量法分离变量法静电场基本方程与电位方程静电场基本方程与电位方程静电场中的介质、导体与电容静电场中的介质、导体与电容23.1 3.1 静电场基本方程与电位方程静电场基本方程与电位方程Fundamental Equations of Electrostatic-Field and electric poten
2、tial equations 3.1.1 3.1.1 静电场的基本方程静电场的基本方程 静电场是一个无旋、有源场,静止电荷就是静电场的源。静电场是一个无旋、有源场,静止电荷就是静电场的源。这两个重要特性用简洁的数学形式为:这两个重要特性用简洁的数学形式为:0E(1)vD(2)vE(2.a)0dlElQdsDs(3)(4)(4.a)QdsEs33.1 3.1 静电场基本方程与电位方程静电场基本方程与电位方程3.1.2 3.1.2 电位定义电位定义 E 在静电场中可通过求解电位函数在静电场中可通过求解电位函数(Potential),再利用上式可方便地再利用上式可方便地求得电场强度求得电场强度E。式
3、中负号表示电场强度的方向从高电位指向低电位。式中负号表示电场强度的方向从高电位指向低电位。1)1)电位的引出电位的引出,0E 根据矢量恒等式根据矢量恒等式0)与与 的微分关系的微分关系E 在静电场中,任意一点的电场强度在静电场中,任意一点的电场强度的方向总是沿着电位减少的最快的方向总是沿着电位减少的最快方向,其大小等于电位的最大变化率。方向,其大小等于电位的最大变化率。EE43.1 3.1 静电场基本方程与电位方程静电场基本方程与电位方程llddE00l)()(0ppppdEppdddzzdyydxx设设P0为参考点为参考点参考点pdEpl)()与与 的积分关系的积分关系E53.1 3.1 静
4、电场基本方程与电位方程静电场基本方程与电位方程)电位参考点的选择原则电位参考点的选择原则 场中任意两点的电位差与参考点无关。场中任意两点的电位差与参考点无关。同一个物理问题,只能选取一个参考点。同一个物理问题,只能选取一个参考点。选择参考点尽可能使电位表达式比较简单,且要有意义。选择参考点尽可能使电位表达式比较简单,且要有意义。例如:点电荷产生的电场:例如:点电荷产生的电场:CRq0400RC0RRq040C 表达式无意义表达式无意义01RR10044RqRqR4qC0 电荷分布在无穷远区时,选择有限远处为参考点。电荷分布在无穷远区时,选择有限远处为参考点。电荷分布在有限区域时,选择无穷远处为
5、参考点;电荷分布在有限区域时,选择无穷远处为参考点;rrR63.1 3.1 静电场基本方程与电位方程静电场基本方程与电位方程3.1.2 3.1.2 电位方程电位方程1)1)泊松方程泊松方程2)2)拉普拉斯方程拉普拉斯方程v202vdRrvv41rrR解为解为:73.2 3.2 静电场中的介质静电场中的介质3.2.1 3.2.1 介质的极化介质的极化 电介质在外电场电介质在外电场E作用下发生极化,形成有向排列的电偶极矩;作用下发生极化,形成有向排列的电偶极矩;电介质内部和表面产生极化电荷;电介质内部和表面产生极化电荷;极化电荷与自由电荷都是产生电场的源。极化电荷与自由电荷都是产生电场的源。无极性
6、分子无极性分子有极性分子有极性分子电介质的极化过程电介质的极化过程83.2 3.2 静电场中的介质静电场中的介质式中式中 为体积元为体积元 内电偶极矩的矢量和,内电偶极矩的矢量和,P的方向从负极化电荷指向的方向从负极化电荷指向正极化电荷。正极化电荷。pV用极化强度用极化强度P P表示电介质的极化程度,即表示电介质的极化程度,即V0VpPlimC/mC/m2 2电偶极矩体密度电偶极矩体密度 实验结果表明,在各向同性、线性、均匀介质中实验结果表明,在各向同性、线性、均匀介质中EP0e 电介质的极化率电介质的极化率,无量纲量。无量纲量。均匀:媒质参数不随空间坐标均匀:媒质参数不随空间坐标(x,y,z
7、)而变化。而变化。各向同性:媒质的特性不随电场的方向而改变各向同性:媒质的特性不随电场的方向而改变,反之称为各向异性;反之称为各向异性;线性:媒质的参数不随电场的值而变化;线性:媒质的参数不随电场的值而变化;e93.2 3.2 静电场中的介质静电场中的介质3.2.2 3.2.2 介质中的高斯定理介质中的高斯定理,相对介电常数相对介电常数0vE 0vvE(真空中)(真空中)(电介质中)(电介质中)定义电位移矢量(定义电位移矢量(DisplacementDisplacement)P0ED则有则有 D电介质中高斯定律的微分形式电介质中高斯定律的微分形式代入代入 ,得得Pv)P(10vEvE)P(0其
8、中其中相对介电常数;相对介电常数;介电常数,单位(介电常数,单位(F/mF/m)er1EEEEEEDree00000)1(P 在各向同性介质中在各向同性介质中 D线从正的自由电荷发出而终止于负的自由电荷。线从正的自由电荷发出而终止于负的自由电荷。a a)高斯定律的微分形式)高斯定律的微分形式103.2 3.2 静电场中的介质静电场中的介质图示平行板电容器中放入一块介质后,其图示平行板电容器中放入一块介质后,其D D 线、线、E E 线和线和P P 线的分布。线的分布。D 线由正的自由电荷发出,终止于负的自由电荷;线由正的自由电荷发出,终止于负的自由电荷;P P 线由负的极化电荷发出,终止于正的
9、极化电荷。线由负的极化电荷发出,终止于正的极化电荷。E 线的起点与终点既可以在自由电荷上,又可以在极化电荷上;线的起点与终点既可以在自由电荷上,又可以在极化电荷上;ED线E线P线D、E与与 P 三者之间的关系三者之间的关系113.3 3.3 静电场中的导体静电场中的导体静电场中的导体具有以下特征:静电场中的导体具有以下特征:导体内部各处电场强度为零导体内部各处电场强度为零导体内部不存在任何净电荷导体内部不存在任何净电荷,电荷都一面电荷的形式分布于电荷都一面电荷的形式分布于导体表面导体表面;导体为一等位体导体为一等位体,其表面为等位面其表面为等位面;导体表面切向电场为零导体表面切向电场为零,而只
10、有法向电场分量而只有法向电场分量,简单媒质中导简单媒质中导体表面处的电场强度为体表面处的电场强度为:snEnE 3.3.1 3.3.1 静电场中的导体静电场中的导体123.3 3.3 静电场中的导体静电场中的导体3.3.2 3.3.2 电容电容定义定义电容电容:UQC 一、孤立导体的电容一、孤立导体的电容RQU04 孤立孤立导体球的电势导体球的电势:当当R确定时确定时,const.40 RUQ例例:用孤立导体球要得到用孤立导体球要得到1F 的电容,球半径为大?的电容,球半径为大?eRR39010)m(1099.841 单位单位:1F(法拉(法拉)=1C/V=pFFmF1263101010 RQ
11、133.3 3.3 静电场中的导体静电场中的导体二、两个导体的电容二、两个导体的电容lBAl dEl dEUsdEdsEndsQsssslsl dEsdEUQC求电容的两条途径求电容的两条途径1)先假定两导体带等量异号的电量先假定两导体带等量异号的电量Q,通过计算电场得出两导体通过计算电场得出两导体间的电压间的电压U,然后计算出电容然后计算出电容2)先假定两导体间的电压先假定两导体间的电压U,通过计算电场得出电量通过计算电场得出电量Q,然后计算然后计算出电容出电容电容与电场强度的大小无关,但与电场强度的分布有关.电容值取决与导体的形状,尺寸以及介电常数143.3 3.3 静电场中的导体静电场中
12、的导体三、三、几种典型的电容器几种典型的电容器及电容及电容dS1)平行板电容器平行板电容器板间场强:板间场强:SQE0SQdEdUU021 电势差:电势差:dSUUQC0210 电容:电容:rE02 2)圆柱形电容器圆柱形电容器2R1R153.3 3.3 静电场中的导体静电场中的导体1200ln22d21RRrrURR 120210ln2RRlUUQC 204rQE 21020114d421RRQrrQURR 122102104RRRRUUQC3)球形电容器球形电容器1R2R163.4 3.4 静电场中的边界条件静电场中的边界条件3.4.1 3.4.1 和和 的边界条件的边界条件ED021EE
13、nsDDn211 1、两种介质之间的边界条件、两种介质之间的边界条件在交界面上不存在在交界面上不存在 时,时,E E、D D满满足折射定律。足折射定律。s222111n2n1cosEcosEDD2211t2t 1sinEsinEEE2121tantan折射定律173.4 3.4 静电场中的边界条件静电场中的边界条件2 2、介质与导体之间的边界条件、介质与导体之间的边界条件 表明:(表明:(1 1)导体表面是一等位面,电力线与导体表面垂直,电场仅)导体表面是一等位面,电力线与导体表面垂直,电场仅有法向分量;(有法向分量;(2 2)导体表面上任一点的)导体表面上任一点的 D 就等于该点的自由电荷密
14、就等于该点的自由电荷密度度 。s 当分界面为导体与电介质的交界面时,分界面上的衔接条件为:当分界面为导体与电介质的交界面时,分界面上的衔接条件为:022tsnEDttsnnEEDD2112183.4 3.4 静电场中的边界条件静电场中的边界条件3.4.2 3.4.2 电位的边界条件电位的边界条件1 1、两种介质之间的电位边界条件、两种介质之间的电位边界条件0)2dE2dE(limdlimn2n10d212121lE21因此因此 设点设点1 1与点与点2 2分别位于分界面的两侧,分别位于分界面的两侧,其间距为其间距为d d,,则则0d 表明表明:在介质分界面上,电位是连续的。在介质分界面上,电位
15、是连续的。nEDnEDnnnn2222211111,snn1122在介质分界面上,在介质分界面上,0snn2211所以所以193.4 3.4 静电场中的边界条件静电场中的边界条件3.4.2 3.4.2 电位的边界条件电位的边界条件2 2、介质与导体之间的电位边界条件、介质与导体之间的电位边界条件constsn11两种介质之间两种介质之间 介质与导体之间介质与导体之间 ttEE2101tEnnEE2211snE11constsn1121nn2211203.4 3.4 静电场中的边界条件静电场中的边界条件例题例题:3.4-1:3.4-1 例题例题:3.4-2:3.4-2 21一、静电场边值问题一、
展开阅读全文