新人教A版高中数学必修二《6.3.4平面向量数乘运算的坐标表示》教案+课件.zip
6.3.4 平面向量数乘运算的坐标表示教学设计(人教 A 版普通高中教科书数学必修第二册第六章)一、教学目标一、教学目标1.掌握向量数乘运算坐标表示,提要相应的数学抽象和数学运算核心素养。2.理解并掌握平面向量共线的坐标表示的充要条件,会根据向量的坐标,判断向量是否共线,三点是否共线,从而提高逻辑推理核心素养以及等价转化的能力。3.掌握平面上线段的中点坐标公式并会推导定比分点坐标公式,能把向量作为工具,用代数的方法解决一些几何问题。二、教学重难点二、教学重难点1.教学重点:平面向量数乘运算的坐标表示,向量共线的充要条件的推导以及三点共线的坐标表示。2.教学难点:用向量呈现几何问题,定比分点公式推导。三、教学过程三、教学过程1.复习回顾,温故知新1.复习回顾,温故知新 问题 1:问题 1:上节课我们学习了平面向量加减法的坐标表示已知),(),(2211yxbyxa,则baba,的坐标是什么?已知 A,B 两点的坐标,如何求AB 的坐标?【答案】),(),(21212121yyxxbayyxxba,22112121,=,ABOBOAxyx yxx yy 【设计意图】通过复习上节所学知识,引入本节新课。建立新旧知识间的联系,提高学生概括、类比推理的能力。2探索新知2探索新知问题 2问题 2:除了向量的加减法运算外,我们还学习了向量的数乘运算,如何用坐标表示向量的数乘运算呢?已知),(yxa ,你能得到a的坐标吗?a中的相当于是倍数,倍数在坐标中相当于是横坐标和纵坐标的倍数.【答案】因为),(yxa,所以jyi xjyi xa)(即),(yxa。结论:这就是说,实数与向量的积的坐标等用这个实数乘以原来向量的相应坐标.【设计意图】:让学生回顾向量坐标的定义,并巩固向量数乘的运算律。例1.已知baba43)43()1,2(,求,的坐标。解:343(2)4()(6)(12,16)(16,9)13 43ab ,【设计意图】通过例题让学生进一步识记向量加、减法、数乘的坐标运算,提高学生的解决问题、分析问题的能力。问题 3:问题 3:探究:设),(),(2211yxbyxa,若向量ba,共线(其中0b),则这两个向量的坐标应满足什么关系?【答 案】向 量ba,共 线 的 充 要 条 件 是 存 在 实 数,使ba,用 坐 标 表 示 为),(),(2211yxyx 即,2121yyxx整理得01221yxyx,这就是说,向量)0(,bba共线的充要条件是01221yxyx。【设计意图】通过探究,掌握共线向量的坐标之间的关系,提高学生分析问题、概括能力。例 2.已知./),6(),2,4(ybayba,求,且解:因为0624/yba,所以,解得3y。例 3:已知),5,2(),3,1(),1,1(CBA判断A,B,C三点之间的关系。【设计意图】先让学生通过作图直观感受三点共线,再引导学生如果证明三点共线,只需要从共起点的向量入手,从而总结出三点共线问题等价于对应向量共线。同时需要说明只要所选两个向量由公共点即可。【答案】解:猜想A,B,C三点共线。因为)4,2()1(3),1(1(AB,)6,3()1(5),1(2(AC,又03462所以ACAB/。又直线 AB,直线 AC 有公共点A,所以,A,B,C 三点共线。【设计意图】通过例题练习共线向量的坐标运算,提高学生解决问题的能力。例 4.设点 P 是线段 P1P2上的一点,点 P1,P2的坐标分别为),(),(2211yxyx ,(1)当 P 是线段 P1P2的中点时,求点 P 的坐标;(2)当 P 是线段 P1P2的一个三等分点时,求点 P 的坐标。【设计意图】通过例题进一步掌握向量加法、减法、数乘向量的坐标运算,提高学生的观察、概括能力。本题求解 P 点坐标方法不唯一,思路一:把 P 点坐标等价于向量OP 坐标,再把12OP OP,作为基地,线性表示出OP,即1212121()(,)222xxyyOPOPOP,也就是基底表示法。思路二:待定系数法先把,P x y设出来,然后把已知中点条件以向量的形式呈现出来,即1212PPPP,再将已知等量关系式用坐标表示出来,得到1121211,(,)2xx yyxx yy从而得到1211211212xxxxyyyy进而求出 P 点坐标。教师小结教师小结:若点 P1,P2的坐标分别为),(),(2211yxyx,线段 P1P2的中点 P 的坐标为),(yx,则222121yyyxxx。(2)中教师要注意引导学生三等分点有两种情况,解题思路与(1)中中点坐标求解过程基本一致。求得 P 点坐标为121222(,)33xxyy或者121222,)33xxyy(问题 3问题 3 探究:如图,线段 P1P2的端点 P1,P2的坐标分别为),(),(2211yxyx ,点 P 是直线 P1P2上的一点,当21PPPP时,点 P 的坐标是什么?【答案】)1,1(2121yyxxP【设计意图】:探究是前面例题的一个拓展,把特殊问题一般化,我们可以借助于前面的解题思路求解一般情况下 P 点的坐标,从而让学生发现向量是一个非常好的解题工具,能够有效解决平面几何中线段和直线问题。4:小结 4:小结 在平面向量加减法坐标表示基础上进一步学习了数乘运算的坐标表示即),(yxa;以及两个向量共线的充要条件,还有三点共线的充要条件。【设计意图】通过总结,让学生进一步巩固本节所学内容,提高概括能力,提高学生的数学运算能力和逻辑推理能力。四:课后作业6.3.46.3.4平面向量数乘运算的坐标平面向量数乘运算的坐标表示表示1:已知 ,则 复习回顾复习回顾xyOAB2:已知 ,则 6.3.46.3.4平面向量数乘运算的坐标表示平面向量数乘运算的坐标表示这就是说,实数与向量的积的坐标等于用这个实数乘以这就是说,实数与向量的积的坐标等于用这个实数乘以 原来向量的相应坐标原来向量的相应坐标.因为即 思考:已知思考:已知 ,你能得到,你能得到 的坐标吗?的坐标吗?所以6.3.46.3.4平面向量数乘运算的坐标表示平面向量数乘运算的坐标表示解解:例例1 1 已知已知 ,求求 的坐的坐标标.6.3.46.3.4平面向量数乘运算的坐标表示平面向量数乘运算的坐标表示探究探究:设设 ,若向量若向量 共共线(其中线(其中 ),则这两个向量的坐标应满足什么关系?),则这两个向量的坐标应满足什么关系?向量 共线的充要条件是存在唯一实数 ,使这就是说,向量 共线的充要条件是6.3.46.3.4平面向量数乘运算的坐标表示平面向量数乘运算的坐标表示两个向量平行的充要条件两个向量平行的充要条件平行(共线)的充要条件是平行(共线)的充要条件是例2.已知 ,且 ,求 。解:因为所以解得6.3.46.3.4平面向量数乘运算的坐标表示平面向量数乘运算的坐标表示例3.已知 判断 三点之间的位置关系。解:猜想 三点共线。因为又所以所以,A,B,C三点共线。又直线AB,直线AC有公共点A,6.3.16.3.1平面向量数乘运算的坐标表示平面向量数乘运算的坐标表示解:(1)解法一,由向量的线性运算可知所以,点P的坐标是例4.设点 是线段上的一点,点 的坐标分别为 ,(1)当 是线段 的中点时,求点 的坐标;(2)当 是线段的 一个三等分点时,求点 的坐标。6.3.46.3.4平面向量数乘运算的坐标表示平面向量数乘运算的坐标表示基底表示法解(1)解法2:设点 所以,点P的坐标是因为所以所以6.3.46.3.4平面向量数乘运算的坐标运算平面向量数乘运算的坐标运算例4.设点 是线段上的一点,点 的坐标分别为 ,(1)当 是线段 的中点时,求点 的坐标;(2)当 是线段的 一个三等分点时,求点 的坐标。待定系数法中点坐标公式中点坐标公式若点 的坐标分别为 ,线段 的中点 的坐标为 则6.3.46.3.4平面向量数乘运算的坐标平面向量数乘运算的坐标表示表示解:(2)由题可知6.3.46.3.4平面向量数乘运算的坐标平面向量数乘运算的坐标表示表示例4.设点 是线段上的一点,点 的坐标分别为 ,(1)当 是线段 的中点时,求点 的坐标;(2)当 是线段的 一个三等分点时,求点 的坐标。解法1:如果 ,那么即点P的坐标是6.3.46.3.4平面向量数乘运算的坐标平面向量数乘运算的坐标表示表示例4.设点 是线段上的一点,点 的坐标分别为 ,(1)当 是线段 的中点时,求点 的坐标;(2)当 是线段的 一个三等分点时,求点 的坐标。解:(2)由题可知解法2:如果 ,设点同理,如果 ,如图,那么点P的坐标是思路小结:基底表示法,待定系数法6.3.46.3.4平面向量数乘运算的坐标运算平面向量数乘运算的坐标运算探究:如图,线段P1P2的端点P1,P2的坐标分别为 ,点P是直线P1P2上的一点,当 时,点 的坐标是什么?解:设点因为所以所以所以解得:6.3.46.3.4平面向量数乘运算的坐标平面向量数乘运算的坐标表示表示小结小结平面向量的坐标表示平面向量数乘运算的坐标表示平面向量加减法的坐标表示三点共线的坐标表示两个向量共线的充要条件的坐标表示三点共线即6.3.46.3.4平面向量数乘运算的坐标平面向量数乘运算的坐标表示表示
收藏
- 资源描述:
-
6.3.4 平面向量数乘运算的坐标表示教学设计(人教 A 版普通高中教科书数学必修第二册第六章)一、教学目标一、教学目标1.掌握向量数乘运算坐标表示,提要相应的数学抽象和数学运算核心素养。2.理解并掌握平面向量共线的坐标表示的充要条件,会根据向量的坐标,判断向量是否共线,三点是否共线,从而提高逻辑推理核心素养以及等价转化的能力。3.掌握平面上线段的中点坐标公式并会推导定比分点坐标公式,能把向量作为工具,用代数的方法解决一些几何问题。二、教学重难点二、教学重难点1.教学重点:平面向量数乘运算的坐标表示,向量共线的充要条件的推导以及三点共线的坐标表示。2.教学难点:用向量呈现几何问题,定比分点公式推导。三、教学过程三、教学过程1.复习回顾,温故知新1.复习回顾,温故知新 问题 1:问题 1:上节课我们学习了平面向量加减法的坐标表示已知),(),(2211yxbyxa,则baba,的坐标是什么?已知 A,B 两点的坐标,如何求AB 的坐标?【答案】),(),(21212121yyxxbayyxxba,22112121,=,ABOBOAxyx yxx yy 【设计意图】通过复习上节所学知识,引入本节新课。建立新旧知识间的联系,提高学生概括、类比推理的能力。2探索新知2探索新知问题 2问题 2:除了向量的加减法运算外,我们还学习了向量的数乘运算,如何用坐标表示向量的数乘运算呢?已知),(yxa ,你能得到a的坐标吗?a中的相当于是倍数,倍数在坐标中相当于是横坐标和纵坐标的倍数.【答案】因为),(yxa,所以jyi xjyi xa)(即),(yxa。结论:这就是说,实数与向量的积的坐标等用这个实数乘以原来向量的相应坐标.【设计意图】:让学生回顾向量坐标的定义,并巩固向量数乘的运算律。例1.已知baba43)43()1,2(,求,的坐标。解:343(2)4()(6)(12,16)(16,9)13 43ab ,【设计意图】通过例题让学生进一步识记向量加、减法、数乘的坐标运算,提高学生的解决问题、分析问题的能力。问题 3:问题 3:探究:设),(),(2211yxbyxa,若向量ba,共线(其中0b),则这两个向量的坐标应满足什么关系?【答 案】向 量ba,共 线 的 充 要 条 件 是 存 在 实 数,使ba,用 坐 标 表 示 为),(),(2211yxyx 即,2121yyxx整理得01221yxyx,这就是说,向量)0(,bba共线的充要条件是01221yxyx。【设计意图】通过探究,掌握共线向量的坐标之间的关系,提高学生分析问题、概括能力。例 2.已知./),6(),2,4(ybayba,求,且解:因为0624/yba,所以,解得3y。例 3:已知),5,2(),3,1(),1,1(CBA判断A,B,C三点之间的关系。【设计意图】先让学生通过作图直观感受三点共线,再引导学生如果证明三点共线,只需要从共起点的向量入手,从而总结出三点共线问题等价于对应向量共线。同时需要说明只要所选两个向量由公共点即可。【答案】解:猜想A,B,C三点共线。因为)4,2()1(3),1(1(AB,)6,3()1(5),1(2(AC,又03462所以ACAB/。又直线 AB,直线 AC 有公共点A,所以,A,B,C 三点共线。【设计意图】通过例题练习共线向量的坐标运算,提高学生解决问题的能力。例 4.设点 P 是线段 P1P2上的一点,点 P1,P2的坐标分别为),(),(2211yxyx ,(1)当 P 是线段 P1P2的中点时,求点 P 的坐标;(2)当 P 是线段 P1P2的一个三等分点时,求点 P 的坐标。【设计意图】通过例题进一步掌握向量加法、减法、数乘向量的坐标运算,提高学生的观察、概括能力。本题求解 P 点坐标方法不唯一,思路一:把 P 点坐标等价于向量OP 坐标,再把12OP OP,作为基地,线性表示出OP,即1212121()(,)222xxyyOPOPOP,也就是基底表示法。思路二:待定系数法先把,P x y设出来,然后把已知中点条件以向量的形式呈现出来,即1212PPPP,再将已知等量关系式用坐标表示出来,得到1121211,(,)2xx yyxx yy从而得到1211211212xxxxyyyy进而求出 P 点坐标。教师小结教师小结:若点 P1,P2的坐标分别为),(),(2211yxyx,线段 P1P2的中点 P 的坐标为),(yx,则222121yyyxxx。(2)中教师要注意引导学生三等分点有两种情况,解题思路与(1)中中点坐标求解过程基本一致。求得 P 点坐标为121222(,)33xxyy或者121222,)33xxyy(问题 3问题 3 探究:如图,线段 P1P2的端点 P1,P2的坐标分别为),(),(2211yxyx ,点 P 是直线 P1P2上的一点,当21PPPP时,点 P 的坐标是什么?【答案】)1,1(2121yyxxP【设计意图】:探究是前面例题的一个拓展,把特殊问题一般化,我们可以借助于前面的解题思路求解一般情况下 P 点的坐标,从而让学生发现向量是一个非常好的解题工具,能够有效解决平面几何中线段和直线问题。4:小结 4:小结 在平面向量加减法坐标表示基础上进一步学习了数乘运算的坐标表示即),(yxa;以及两个向量共线的充要条件,还有三点共线的充要条件。【设计意图】通过总结,让学生进一步巩固本节所学内容,提高概括能力,提高学生的数学运算能力和逻辑推理能力。四:课后作业6.3.46.3.4平面向量数乘运算的坐标平面向量数乘运算的坐标表示表示1:已知 ,则 复习回顾复习回顾xyOAB2:已知 ,则 6.3.46.3.4平面向量数乘运算的坐标表示平面向量数乘运算的坐标表示这就是说,实数与向量的积的坐标等于用这个实数乘以这就是说,实数与向量的积的坐标等于用这个实数乘以 原来向量的相应坐标原来向量的相应坐标.因为即 思考:已知思考:已知 ,你能得到,你能得到 的坐标吗?的坐标吗?所以6.3.46.3.4平面向量数乘运算的坐标表示平面向量数乘运算的坐标表示解解:例例1 1 已知已知 ,求求 的坐的坐标标.6.3.46.3.4平面向量数乘运算的坐标表示平面向量数乘运算的坐标表示探究探究:设设 ,若向量若向量 共共线(其中线(其中 ),则这两个向量的坐标应满足什么关系?),则这两个向量的坐标应满足什么关系?向量 共线的充要条件是存在唯一实数 ,使这就是说,向量 共线的充要条件是6.3.46.3.4平面向量数乘运算的坐标表示平面向量数乘运算的坐标表示两个向量平行的充要条件两个向量平行的充要条件平行(共线)的充要条件是平行(共线)的充要条件是例2.已知 ,且 ,求 。解:因为所以解得6.3.46.3.4平面向量数乘运算的坐标表示平面向量数乘运算的坐标表示例3.已知 判断 三点之间的位置关系。解:猜想 三点共线。因为又所以所以,A,B,C三点共线。又直线AB,直线AC有公共点A,6.3.16.3.1平面向量数乘运算的坐标表示平面向量数乘运算的坐标表示解:(1)解法一,由向量的线性运算可知所以,点P的坐标是例4.设点 是线段上的一点,点 的坐标分别为 ,(1)当 是线段 的中点时,求点 的坐标;(2)当 是线段的 一个三等分点时,求点 的坐标。6.3.46.3.4平面向量数乘运算的坐标表示平面向量数乘运算的坐标表示基底表示法解(1)解法2:设点 所以,点P的坐标是因为所以所以6.3.46.3.4平面向量数乘运算的坐标运算平面向量数乘运算的坐标运算例4.设点 是线段上的一点,点 的坐标分别为 ,(1)当 是线段 的中点时,求点 的坐标;(2)当 是线段的 一个三等分点时,求点 的坐标。待定系数法中点坐标公式中点坐标公式若点 的坐标分别为 ,线段 的中点 的坐标为 则6.3.46.3.4平面向量数乘运算的坐标平面向量数乘运算的坐标表示表示解:(2)由题可知6.3.46.3.4平面向量数乘运算的坐标平面向量数乘运算的坐标表示表示例4.设点 是线段上的一点,点 的坐标分别为 ,(1)当 是线段 的中点时,求点 的坐标;(2)当 是线段的 一个三等分点时,求点 的坐标。解法1:如果 ,那么即点P的坐标是6.3.46.3.4平面向量数乘运算的坐标平面向量数乘运算的坐标表示表示例4.设点 是线段上的一点,点 的坐标分别为 ,(1)当 是线段 的中点时,求点 的坐标;(2)当 是线段的 一个三等分点时,求点 的坐标。解:(2)由题可知解法2:如果 ,设点同理,如果 ,如图,那么点P的坐标是思路小结:基底表示法,待定系数法6.3.46.3.4平面向量数乘运算的坐标运算平面向量数乘运算的坐标运算探究:如图,线段P1P2的端点P1,P2的坐标分别为 ,点P是直线P1P2上的一点,当 时,点 的坐标是什么?解:设点因为所以所以所以解得:6.3.46.3.4平面向量数乘运算的坐标平面向量数乘运算的坐标表示表示小结小结平面向量的坐标表示平面向量数乘运算的坐标表示平面向量加减法的坐标表示三点共线的坐标表示两个向量共线的充要条件的坐标表示三点共线即6.3.46.3.4平面向量数乘运算的坐标平面向量数乘运算的坐标表示表示
展开阅读全文