书签 分享 收藏 举报 版权申诉 / 5
上传文档赚钱

类型六年级数学思维提优资料第26讲《乘法和加法原理》试题.doc

  • 上传人(卖家):副主任
  • 文档编号:6853899
  • 上传时间:2023-08-15
  • 格式:DOC
  • 页数:5
  • 大小:41KB
  • 【下载声明】
    1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
    2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
    3. 本页资料《六年级数学思维提优资料第26讲《乘法和加法原理》试题.doc》由用户(副主任)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
    4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
    5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
    配套讲稿:

    如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。

    特殊限制:

    部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。

    关 键  词:
    乘法和加法原理 六年级 数学 思维 资料 26 乘法 加法 原理 试题 下载 _六年级_奥数_数学_小学
    资源描述:

    1、第26讲 乘法和加法原理一、知识要点在做一件事情时,要分几步完成,而在完成每一步时又有几种不同的方法,要知道完成这件事一共有多少种方法,就用乘法原理来解决。做一件事时有几类不同的方法,而每一类方法中又有几种可能的做法就用加法原理来解决。二、精讲精练【例题1】由数字0,1,2,3组成三位数,问:可组成多少个不相等的三位数?可组成多少个没有重复数字的三位数?在确定组成三位数的过程中,应该一位一位地去确定,所以每个问题都可以分三个步骤来完成。要求组成不相等的三位数,所以数字可以重复使用。百位上不能取0,故有3种不同的取法:十位上有4种取法,个位上也有4种取法,由乘法原理共可组成344=48个不相等的

    2、三位数。要求组成的三位数没有重复数字,百位上不能取0,有三种不同的取法,十位上有三种不同的取法,个位上有两种不同的取法,由乘法原理共可组成332=18个没有重复数字的三位数。练习1:1、有数字1,2,3,4,5,6共可组成多少个没有重复数字的四位奇数?2、在自然数中,用两位数做被减数,一位数做减数,共可组成多少个不同的减法算式?3、由数字1,2,3,4,5,6,7,8,可组成多少个:三位数;三位偶数;没有重复数字的三位偶数;百位是8的没有重复数字的三位数;百位是8的没有重复数字的三位偶数。【例题2】有两个相同的正方体,每个正方体的六个面上分别标有数字1,2,3,4,5,6。将两个正方体放在桌面

    3、上,向上的一面数字之和为偶数的有多少种情形?要使两个数字之和为偶数,就需要这两个数字的奇、偶性相同,即两个数字同为奇数或偶数。所以,需要分两大类来考虑:两个正方体向上一面同为奇数的共有33=9(种)不同的情形;两个正方体向上一面同为偶数的共有33=9(种)不同的情形;两个正方体向上一面同为偶数的共有33+33=18(种)不同的情形。练习2:1、在11000的自然数中,一共有多少个数字1?2、在1500的自然数中,不含数字0和1的数有多少个?3、十把钥匙开十把锁,但不知道哪把钥匙开哪把锁,问最多试开多少次,就能把锁和钥匙配起来?4、由数字0,1,2,3,4可以组成多少个没有重复数字的三位偶数?【

    4、例题3】书架上层有6本不同的数学书,下层有5本不同的语文书,若任意从书架上取一本数学书和一本语文书,有多少种不同的取法?从书架上任取一本数学书和一本语文书,可分两个步骤完成,第一步先取数学书,有6种不同的方法,而这6种的每一种取出后,第二步再取语文书,又有5种不同的取法,这样共有6个5种取法,应用乘法计算65=30(种),有30种不同的取法。练习3:1、商店里有5种不同的儿童上衣,4种不同的裙子,妈妈准备为女儿买上衣一件和裙子一条组成一套,共有多少种不同的选法?2、小明家到学校共有5条路可走,从学校到少年宫共有3条路可走。小明从家出发,经过学校然后到少年宫,共有多少种不同的走法?3、张师傅到食

    5、堂吃饭,主食有2种,副食有6种,主、副食各选一种,他有几种不同的选法?【例题4】在2,3,5,7,9这五个数字中,选出四个数字,组成被3除余2的四位数,这样的四位数有多少个?从五个数字中选出四个数字,即五个数字中要去掉一个数字,由于原来五个数字相加的和除以3余2,所以去掉的数字只能是3或9。去掉的数字为3时,即选2,5,7,9四个数字,能排出4321=24(个)符合要求的数,去掉的数字为9时也能排出24个符合要求得数,因此这样的四位数一共有24+24=48(个)练习4:1、在1,2,3,4,5这五个数字中,选出四个数字组成被3除余2的四位数,这样的四位数有多少个?2、在1,2,3,4,5这五个

    6、数字中,选出四个数字组成能被3整除的四位数,这样的四位数有多少个?3、在1,4,5,6,7这五个数字中,选出四个数字组成被3除余1的四位数,这样的四位数有多少个?【例题5】从学校到少年宫有4条东西的马路和3条南北的马路相通(如图),小明从学校出发到少年宫(只许向东或向南行进),最后有多少种走法?为了方便解答,把图中各点用字母表示如图。根据小明步行规则,显然可知由A到T通过AC边上的各点和AN边上的各点只有一条路线,通过E点有两条路线(即从B点、D点来各一条路线),通过H点有3条路线(即从E点来有二条路线,从G点来有一条路线),这样推断可知通过任何一个交叉点的路线总数等于通过该点左边、上方的两邻接交叉点的路线的总和,因此,可求得通过S点有4条路线,通过F点有3条路线由此可见,由A点通过T点有10条不同的路线,所以小明从学校到少年宫最多有10种走法。练习5:1、从学校到图书馆有5条东西的马路和5条南北的马路相通(如图)。李菊从学校出发步行到图书馆(只许向东或向南行进),最多有多少种走法?2、某区的街道非常整齐(如图),从西南角A处走到东北角B处,要求走最近的路,一共有多少种不同的走法?3、如图有6个点,9条线段,一只小虫从A点出发,要沿着某几条线段爬到F点。行进中,同一个点或同一条线段只能经过一次,这只小虫最多有多少种不同的走法?5

    展开阅读全文
    提示  163文库所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
    关于本文
    本文标题:六年级数学思维提优资料第26讲《乘法和加法原理》试题.doc
    链接地址:https://www.163wenku.com/p-6853899.html

    Copyright@ 2017-2037 Www.163WenKu.Com  网站版权所有  |  资源地图   
    IPC备案号:蜀ICP备2021032737号  | 川公网安备 51099002000191号


    侵权投诉QQ:3464097650  资料上传QQ:3464097650
       


    【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。

    163文库