六年级数学思维提优资料第26讲《乘法和加法原理》试题.doc
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《六年级数学思维提优资料第26讲《乘法和加法原理》试题.doc》由用户(副主任)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 乘法和加法原理 六年级 数学 思维 资料 26 乘法 加法 原理 试题 下载 _六年级_奥数_数学_小学
- 资源描述:
-
1、第26讲 乘法和加法原理一、知识要点在做一件事情时,要分几步完成,而在完成每一步时又有几种不同的方法,要知道完成这件事一共有多少种方法,就用乘法原理来解决。做一件事时有几类不同的方法,而每一类方法中又有几种可能的做法就用加法原理来解决。二、精讲精练【例题1】由数字0,1,2,3组成三位数,问:可组成多少个不相等的三位数?可组成多少个没有重复数字的三位数?在确定组成三位数的过程中,应该一位一位地去确定,所以每个问题都可以分三个步骤来完成。要求组成不相等的三位数,所以数字可以重复使用。百位上不能取0,故有3种不同的取法:十位上有4种取法,个位上也有4种取法,由乘法原理共可组成344=48个不相等的
2、三位数。要求组成的三位数没有重复数字,百位上不能取0,有三种不同的取法,十位上有三种不同的取法,个位上有两种不同的取法,由乘法原理共可组成332=18个没有重复数字的三位数。练习1:1、有数字1,2,3,4,5,6共可组成多少个没有重复数字的四位奇数?2、在自然数中,用两位数做被减数,一位数做减数,共可组成多少个不同的减法算式?3、由数字1,2,3,4,5,6,7,8,可组成多少个:三位数;三位偶数;没有重复数字的三位偶数;百位是8的没有重复数字的三位数;百位是8的没有重复数字的三位偶数。【例题2】有两个相同的正方体,每个正方体的六个面上分别标有数字1,2,3,4,5,6。将两个正方体放在桌面
3、上,向上的一面数字之和为偶数的有多少种情形?要使两个数字之和为偶数,就需要这两个数字的奇、偶性相同,即两个数字同为奇数或偶数。所以,需要分两大类来考虑:两个正方体向上一面同为奇数的共有33=9(种)不同的情形;两个正方体向上一面同为偶数的共有33=9(种)不同的情形;两个正方体向上一面同为偶数的共有33+33=18(种)不同的情形。练习2:1、在11000的自然数中,一共有多少个数字1?2、在1500的自然数中,不含数字0和1的数有多少个?3、十把钥匙开十把锁,但不知道哪把钥匙开哪把锁,问最多试开多少次,就能把锁和钥匙配起来?4、由数字0,1,2,3,4可以组成多少个没有重复数字的三位偶数?【
展开阅读全文