专题10:几何三大变换之平移探讨(中考数学解题专题指导).doc
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《专题10:几何三大变换之平移探讨(中考数学解题专题指导).doc》由用户(四川天地人教育)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 中考数学解题专题指导 专题10:几何三大变换之平移探讨 【中考数学解题专题指导】 专题 10 几何 变换 平移 探讨 中考 数学 解题 指导 下载 _二轮专题_中考复习_数学_初中
- 资源描述:
-
1、 1 【中考攻略】专题【中考攻略】专题 10:几何三大变换之平移探讨:几何三大变换之平移探讨 轴对称、平移、旋转是平面几何的三大变换。平移变换是指在同一平面内,将一个图形(含点、线、 面)整体按照某个直线方向移动一定的距离,这样的图形变换叫做图形的平移变换,简称平移。平移由移 动的方向和距离决定。经过平移,平移前后图形的形状、大小不变,只是位置发生改变;平移前后图形的 对应点所连的线段平行且相等;平移前后图形的对应线段平行且相等,对应角相等。 在初中数学以及日常生活中有着大量的平移变换的知识,是中考数学的必考内容。 结合全国各地中考的实例,我们从下面七方面探讨平移变换: (1)构造平移图形;
2、(2)点的平移; (3) 直线(线段)的平移; (4)曲线的平移; (5)三角形的平移; (6)四边形的平移; (7)圆的平移。 一、构造平移图形:一、构造平移图形: 典型例题:典型例题: 例例 1. (黑龙江黑河、齐齐哈尔、大兴安岭、鸡西(黑龙江黑河、齐齐哈尔、大兴安岭、鸡西 6 分)分)顶点在网格交点的多边形叫做格点多边形,如图, 在一个 9 X 9 的正方形网格中有一个格点ABC设网格中小正方形的边长为 l 个单位长度 (1)在网格中画出ABC 向上平移 4 个单位后得到的AlBlCl (2)在网格中画出ABC 绕点 A 逆时针旋转 900后得到的AB2C2 (3)在(1)中ABC 向上
3、平移过程中,求边 AC 所扫过区域的面积 【答案】【答案】解: (1) 、 (2)如图所示: (3)ABC 向上平移 4 个单位后得到的A1B1C1,ABC 向上平移过程中,边 AC 所扫 过区域是以 4 为边长,以 2 为高的平行四边形, 边 AC 所扫过区域的面积=4 2=8。 【考点】【考点】作图(旋转和平移变换) ,平行四边形的判定和性质。 2 【分析】【分析】 (1)根据图形平移的性质画出平移后的A1B1C1即可。 (2)根据图形旋转的性质画出ABC 绕点 A 逆时针旋转 90 后得到的AB2C2。 (3)根据ABC 向上平移 4 个单位后得到的A1B1C1,ABC 向上平移过程中,
4、求边 AC 所扫 过区域是以 4 为边长,以 2 为高的平行四边形,由平行四边形的面积公式即可得出结论。 例例 2.(黑龙江龙东地区(黑龙江龙东地区 6 分)分)如图,方格纸中每个小正方形的边长都是单位 1,ABC 的三个顶点都在格 点上,结合所给的平面直角坐标系解答下列问题: (1)将ABC 向右平移 3 个单位长度再向下平移 2 个单位长度,画出两次平移后的A1B1C1; (2)写出 A1、C1的坐标; (3)将A1B1C1绕 C1逆时针旋转 90 ,画出旋转后的A2B2C1,求线段 B1C1旋转过程中扫过的面积(结 果保留)。 【答案】【答案】解: (1)两次平移后的A1B1C1如图所示
5、: (2)由A1B1C1在坐标系中的位置可知,A1(0,2) ;C1(2,0) 。 (3)旋转后的图形如图所示: 3 由勾股定理可知, 22 11 B C1417, 2 9017 17 S 3604 扇形 。 线段 B1C1旋转过程中扫过的面积为17 4 。 【考点】【考点】作图(旋转和平移变换) ,扇形面积的计算。 【分析】【分析】 (1)根据图形平移的性质画出两次平移后的A1B1C1即可。 (2)根据A1B1C1在坐标系中的位置写出 A1、C1的坐标; (3)根据图形旋转的性质画出旋转后的A2B2C1,再根据勾股定理求出 B1C1的长,由扇形的面 积公式即可计算出线段 B1C1旋转过程中扫
6、过的面积。 例例 3.(贵州六盘水(贵州六盘水 10 分)分)如图,方格纸中的每个小方格都是边长为 1 个单位的正方形RtABC 的顶点 均在格点上,建立平面直角坐标系后,点 A 的坐标为(4,1) ,点 B 的坐标为(1,1) (1)先将 RtABC 向右平移 5 个单位,再向下平移 1 个单位后得到 RtA1B1C1试在图中画出图形 RtA1B1C1,并写出 A1的坐标; (2)将 RtA1B1C1绕点 A1顺时针旋转 90 后得到 RtA2B2C2,试在图中画出图形 RtA2B2C2并计算 RtA1B1C1在上述旋转过程中 C1所经过的路程 【答案】【答案】解: (1)如图所示,A1B1
7、C1即为所求作的三角形。点 A1的坐标为(1,0) 。 (2)如图所示,A2B2C2即为所求作的三角形。 4 根据勾股定理,A1C1= 22 2 +3 = 13, 旋转过程中 C1所经过的路程为 901313 = 1802 。 【考点】【考点】网格问题,作图(旋转和平移变换) ,勾股定理,弧长的计算。 【分析】【分析】 (1)根据网格结构找出点 ABC 平移后的对应点 A1、B1、C1的位置,然后顺次连接即可,再 根据平面直角坐标系写出点 A1的坐标即可。 (2)根据网格结构找出点 A1、B1、C1绕点 A1顺时针旋转 90 后的对应点 A2、B2、C2的位置, 然后顺次连接即可,再根据勾股定
8、理求出 A1C1的长度,然后根据弧长公式列式计算即可得解。 例例 4.(安徽省(安徽省 8 分)分)如图,在边长为 1 个单位长度的小正方形组成的网格中,给出了格点ABC(顶点是 网格线的交点)和点 A1. (1)画出一个格点A1B1C1,并使它与ABC 全等且 A 与 A1是对应点; (2)画出点 B 关于直线 AC 的对称点 D,并指出 AD 可以看作由 AB 绕 A 点经过怎样的旋转而得到的. 【答案】【答案】解: (1)答案不唯一,如图,平移即可: 5 (2)作图如上, AB=10,AD=10,BD=2 5,AB2+AD2=BD2。 ABD 是直角三角形。 AD 可以看作由 AB 绕
9、A 点逆时针旋转 90 得到的。 【考点】【考点】作图(平移变换、轴对称变换) ,全等图形,旋转和轴对称的性质,勾股定理和逆定理。 【分析】【分析】 (1)利用ABC 三边长度,画出以 A1为顶点的三角形三边长度即可,利用图象平移,可得出 A1B1C1。 (2)利用点 B 关于直线 AC 的对称点 D,得出 D 点坐标,根据勾股定理和逆定理可得出 AD 与 AB 的位置关系。 例例 5.(海南省(海南省 8 分)分)如图,在正方形网络中,ABC 的三个顶点都在格点上,点 A、B、C 的坐标分别为 (2,4) 、 (2,0) 、 (4,1) ,结合所给的平面直角坐标系解答下列问题: (1)画出A
10、BC 关于原点 O 对称的A1B1C1. (2)平移ABC,使点 A 移动到点 A2(0,2) ,画出平移后的A2B2C2并写出点 B2、C2的坐标. (3) 在ABC、 A1B1C1、 A2B2C2中, A2B2C2与 成中心对称, 其对称中心的坐标为 . 6 【答案】【答案】解: (1)ABC 关于原点 O 对称的A1B1C1如图所示: (2)平移后的A2B2C2如图所示: 点 B2、C2的坐标分别为(0,2) , (2,1) 。 (3)A1B1C1; (1,1) 。 【考点】【考点】网格问题,作图(中心对称变换和平移变换) ,中心对称和平移的性 质。 【分析】【分析】 (1)根据中心对称
11、的性质,作出 A、B、C 三点关于原点的对称点 A1、B1、C1,连接即可。 (2)根据平移的性质,点 A(2,4)A2(0,2) ,横坐标加 2,纵坐标减 2,所以将 B(2, 0) 、C(4,1)横坐标加 2,纵坐标减 2 得到 B2(0,2) 、C2(2,1) ,连接即可。 (3)如图所示。 例例 6.(江苏泰州(江苏泰州 10 分)分)如图,在边长为 1 个单位长度的小正方形组成的网格中,ABC 的顶点 A、B、 C 在小正方形的顶点上,将ABC 向下平移 4 个单位、再向右平移 3 个单位得到A1B1C1,然后将 A1B1C1绕点 A1顺时针旋转 90 得到A1B2C2 (1)在网格
12、中画出A1B1C1和A1B2C2; 7 (2)计算线段 AC 在变换到 A1C2的过程中扫过区域的面积(重叠部分不重复计算) 【答案】【答案】解: (1)如图所示: (2)图中是边长为 1 个单位长度的小正方形组成的网格, 22 AC 222 2。 将ABC 向下平移 4 个单位 AC 所扫过的面积是以 4 为 底,以 2 为高的平行四边形的面积:4 2=8。 再向右平移 3 个单位 AC 所扫过的面积是以 3 为底,以 2 为高的平行四边形的面积:4 2=6。 当A1B1C1绕点 A1顺时针旋转 90 到A1B2C2时,A1C1所扫过的面积是以 A1为圆心以 以2 2为半径, 圆心角为 90
13、 的扇形的面积, 重叠部分是以 A1为圆心, 以2 2为半径, 圆心角为 45 的扇形的面积,去掉重叠部分,面积为: 2 452 2 = 360 线段 AC 在变换到 A1C2的过程中扫过区域的面积=86=14+。 【考点】【考点】作图(平移和旋转变换),平移和旋转的性质,网格问题,勾股定理,平行四边形面积和扇形面 积的计算。 【分析】【分析】(1)根据图形平移及旋转的性质画出A1B1C1及A1B2C2即可。 (2)画出图形,根据图形平移及旋转的性质分三部分求取面积。 例例 7.(甘肃白银甘肃白银 3 分)分)将如图所示的图案通过平移后可以得到的图案是【 】 8 A B C D 【答案】【答案
14、】A。 【考点】【考点】生活中的平移现象。 【分析】【分析】根据平移的性质,平移只改变图形的位置,不改变图形的形状与大小。观察各选项图形可知,A 选项的图案可以通过平移得到。故选 A。 练习题:练习题: 1. (江苏常州(江苏常州 6 分)分)在平面直角坐标系 xOy 中,已知ABC 和DEF 的顶点坐标分别为 A(1,0) 、B(3, 0) 、C(2,1) 、D(4,3) 、E(6,5) 、F(4,7) 。按下列要求画图:以点 O 为位似中心,将ABC 向 y 轴左侧按比例尺 2:1 放大得ABC 的位似图形A1B1C1,并解决下列问题: (1)顶点 A1的坐标为 ,B1的坐标为 ,C1的坐
15、标为 ; (2)请你利用旋转、平移两种变换,使A1B1C1通过变换后得到A2B2C2,且A2B2C2恰与DEF 拼接 成一个平行四边形(非正方形) 。写出符合要求的变换过程。 3.(福建泉州(福建泉州 9 分)分)如图,在方格纸中(小正方形的边长为 1) ,反比例函数 k y x 与直线的交点 A、B 均 在格点上,根据所给的直角坐标系(点 O 是坐标原点) ,解答下列问题: (1)分别写 出点 A、B 的坐标后,把直线 AB 向右平移平移 5 个单位,再在向上平移 5 个单位,画 出平移 后的直线 AB. (2)若点 C 在函数 k y x 的图像上,ABC 是以 AB 为底边的等腰三角形,
16、请写出点 C 的坐标. 9 4.(湖北武汉湖北武汉 7 分)分)如图,在平面直角坐标系中,点 A、B 的坐标分别为(1,3)、(4,1),先 将线段 AB 沿一确定方向平移得到线段 A1B1,点 A 的对应点为 A1,点 B1的坐标为(0,2),在将线段 A1B1 绕远点 O 顺时针旋转 90 得到线段 A2B2,点 A1的对应点为点 A2 (1)画出线段 A1B1、A2B2; (2)直接写出在这两次变换过程中,点 A 经过 A1到达 A2的路径长 5.(湖南张家界(湖南张家界 6 分)分)如图,在方格纸中,以格点连线为边的三角形叫格点三角形,请按要求完成下列操 作:先将格点ABC 向右平移
17、4 个单位得到A1B1C1,再将A1B1C1绕点 C1点旋转 180 得到A2B2C2 6.(四川(四川凉山凉山 6 分)分)如图,梯形 ABCD 是直角梯形 (1)直接写出点 A、B、C、D 的坐标; (2)画出直角梯形 ABCD 关于 y 轴的对称图形,使它与梯形 ABCD 构成一个等腰梯形 (3)将(2)中的等腰梯形向上平移四个单位长度,画出平移后的图形 (不要求写作法) 10 7.(辽宁丹东辽宁丹东 8 分)分)已知:ABC 在坐标平面内,三个顶点的坐标分别为 A(0,3) ,B(3,4) ,C(2,2). (正方形网格中, 每个小正方形的边长是 1 个单位长度) (1)画出ABC 向
18、下平移 4 个单位得到的A1B1C1,并直接写出 C1点的坐标; (2)以点 B 为位似中心,在网格中 画出A2BC2,使A2BC2与ABC 位似,且位似比为 21,并直 接写出 C2点的坐标及A2BC2的面积 二、点的平移:二、点的平移: 典型例题:典型例题: 例例 1. (广东(广东肇庆肇庆 3 分)分)点 M(2,1)向上平移 2 个单位长度得到的点的坐标是【 】 A (2,0) B (2,1) C (2,2) D (2,3) 【答案】【答案】B。 【考点】【考点】坐标平移。 【分析】【分析】根据坐标的平移变化的规律,左右平移只改变点的横坐标,左减右加。上下平移只改变点的纵坐 标,下减上
19、加。因此, 点 M(2,-1)向上平移 2 个单位长度,12=1。 平移后的点坐标是(2,1) 。故选 B。 11 例例 2. (辽宁鞍山(辽宁鞍山 3 分)分)在平面直角坐标系中,将点 P(1,4)向右平移 2 个单位长度后,再向下平移 3 个单位长度,得到点 P1,则点 P1的坐标为 【答案】【答案】 (1,1) 。 【考点】【考点】坐标平移。 【分析】【分析】根据坐标的平移变化的规律,左右平移只改变点的横坐标,左减右加。上下平移只改变点的纵坐 标,下减上加。因此, 点 P(1,4)向右平移 2 个单位长度,向下平移 3 个单位长度,1+2=1,43=1。 点 P1的坐标为(1,1) 。
20、例例 2.(江苏泰州(江苏泰州 3 分)分)如图,数轴上的点 P 表示的数是1,将点 P 向右移动 3 个单位长度得到点 P, 则点 P表示的数是 【答案】【答案】2。 【考点】【考点】数轴和数,平移的性质。 【分析】【分析】如图,根据平移的性质,点 P表示的数是 2。 例例 3.(安徽省(安徽省 4 分)分)如图,A 点在半径为 2 的O 上,过线段 OA 上的一点 P 作直线,与O 过 A 点的 切线交于点 B,且APB=60 ,设 OP= x,则PAB 的面积 y 关于 x 的函数图像大致是【 】 【答案】【答案】D。 【考点】【考点】动点问题的函数图象,锐角三角函数定义,特殊角的三角函
21、数值。 【分析】【分析】利用 AB 与O 相切,BAP 是直角三角形,把直角三角形的直角边表示出来,从而用 x 表示出 三角形的面积,根据函数解析式确定函数的图象: AB 与O 相切,BAP=90 , OP=x,AP=2x,BPA=60 ,AB=3(2x), APB 的面积 2 3 y(2x) 2 , (0 x2) 。 PAB 的面积 y 关于 x 的函数图像是经过(2,0)的抛物线在 0 x2 的部分。故选 D。 12 例例 4. (浙江嘉兴、 舟山(浙江嘉兴、 舟山 4 分)分) 如图, 正方形 ABCD 的边长为 a, 动点 P 从点 A 出发, 沿折线 ABDCA 的路径运动,回到点
22、A 时运动停止设点 P 运动的路程长为长为 x,AP 长为 y,则 y 关于 x 的函数图象大 致是【 】 ABC D 【答案】【答案】D。 【考点】【考点】动点问题的函数图象。 【分析】【分析】 因为动点 P 按沿折线 ABDCA 的路径运动, 因此, y 关于 x 的函数图象分为四部分: AB, BD,DC,CA。 当动点 P 在 AB 上时,函数 y 随 x 的增大而增大,且 y=x,四个图象均正确。 当动点 P 在 BD 上时,函数 y 在动点 P 位于 BD 中点时最小,且在中点两侧是对称的,故选项 B 错误。 当动点 P 在 DC 上时,函数 y 随 x 的增大而增大,故选项 A,
23、C 错误。 当动点 P 在 CA 上时,函数 y 随 x 的增大而减小。故选项 D 正确。故选 D。 例例 5.(浙江(浙江温州温州 4 分)分)如图,在ABC 中,C=90 ,M 是 AB 的中点,动点 P 从点 A 出发, 沿 AC 方向匀速运动到终点 C,动点 Q 从点 C 出发, 沿 CB 方向匀速运动到终点 B.已知 P, Q 两点同时出发, 并同时到达终点.连结 MP,MQ,PQ.在整个运动过程中,MPQ 的面积大小变化情况是【 】 A.一直增大 B.一直减小 C.先减小后增大 D.先增大后减小 【答案】【答案】C。 【考点】【考点】动点问题的函数图象。 【分析】【分析】如图所示,
展开阅读全文