苏教版2019版高中数学选择性必修第二册第7章计数原理知识点清单.docx
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《苏教版2019版高中数学选择性必修第二册第7章计数原理知识点清单.docx》由用户(wenku818)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 苏教版 2019 高中数学 选择性 必修 第二 计数 原理 知识点 清单 下载 _选择性必修第二册_苏教版(2019)_数学_高中
- 资源描述:
-
1、苏教版2019版高中数学选择性必修第二册第7章计数原理知识点清单目录第7章计数原理7. 1两个基本计数原理7. 2排列7. 3组合7. 4二项式定理第 11 页 共 11 页第7章计数原理7. 1两个基本计数原理一、分类计数原理(加法原理)1. 如果完成一件事,有n类方式,在第1类方式中有m1种不同的方法,在第2类方式中有m2种不同的方法在第n类方式中有mn种不同的方法,那么完成这件事共有N=m1+m2+mn种不同的方法. 二、分步计数原理(乘法原理)1. 如果完成一件事,需要分成n个步骤,做第1步有m1种不同的方法,做第2步有m2种不同的方法做第n步有mn种不同的方法,那么完成这件事共有N=
2、m1m2mn种不同的方法. 三、两个基本计数原理的比较1. 分类计数原理与分步计数原理的比较分类计数原理分步计数原理不同点分类完成,类类相加分步完成,步步相乘每类方式中的每一种方法都能独立完成这件事每步依次完成才算完成这件事相同点都可用来计算完成某件事的方法种数,最终的目的都是完成某件事注意点类类独立,不重不漏步步相依,步骤完整四、两个基本计数原理的选择与应用1. 应用分类计数原理解题的一般思路2. 应用分步计数原理解题的一般思路应用分步乘法原理时,要确定好顺序,还要注意元素是否可以重复选取. 3. 两个计数原理的综合应用(1)类中有步从AB共有(m1m2m3+m4m5)种方法. (2)步中有
3、类从AD共有m1(m2+m3+m4)m5种方法. “类”用“+”连接,“步”用“”连接,“类”独立,“步”连续,“类”标志一件事的完成,“步”则缺一不可. 五、解决计数问题的常用方法1. 在计数问题中常涉及元素与位置,解题时要分析清楚要完成的事是元素选择位置还是位置选择元素. 2. 当涉及元素数目不大时,一般选择用列举法、数形图法. 当涉及元素数目较大或情况比较复杂时,一般有两种方法:(1)直接法:直接应用分类计数原理或分步计数原理解题. (2)间接法:先去掉限制条件,计算方法总数,然后减去所有不符合条件的方法数,从而得到正确答案. 3. 涂色(种植)问题一般是直接利用两个基本计数原理求解,常
4、用方法如下:(1)根据区域的不同,以区域为主分步计数,用分步计数原理分析;(2)以颜色(种植作物)为主分类讨论,用分类计数原理分析. 7. 2排列一、排列、排列数与排列数公式排列一般地,从n个不同的元素中取出m(mn)个元素,按照一定的顺序排成一列,叫作从n个不同元素中取出m个元素的一个排列排列数一般地,从n个不同元素中取出m(mn)个元素的所有排列的个数,叫作从n个不同元素中取出m个元素的排列数,用符号Anm表示排列数公式Anm=n(n-1)(n-2)(n-m+1),其中n,mN*,且mn二、全排列、阶乘的概念及相关结论1. 全排列:n个不同元素全部取出的一个排列,叫作n个不同元素的一个全排
5、列. 2. n的阶乘在排列数公式中,当m=n时,即有Ann=n(n-1)(n-2)321,n(n-1)(n-2)321称为n的阶乘,通常用n!表示,即Ann=n!. 3. 阶乘的相关结论(1)规定:0!=1;(2)排列数公式的另一种形式: Anm=n!(nm)! (其中n,mN*,且mn). 三、排列数及其运算1. 排列数运算的方法与技巧(1)拆项技巧nn!=(n+1)!-n!; n1n!=1(n1)!-1n!. (2)化简技巧n!=n(n-1)!=n(n-1)(n-2)!;Anm=nAn1m1;Anm+mAnm1=An+1m. 2. 解有关排列数的方程或不等式的步骤 四、有限制条件的排列问题
6、1. “在”与“不在”的问题常见的“在”与“不在”的有限制条件的排列问题是典型的特殊元素或特殊位置问题. 解决“在”与“不在”的排列问题的原则是谁“特殊”谁优先. 解题思路如下:2. “相邻”与“不相邻”问题限制条件解题策略元素相邻通常采用“捆绑法”,即把相邻元素看成一个整体并与其他元素进行排列元素不相邻通常采用“插空法”,即先考虑不受限制的元素的排列,再将不相邻元素插在前面元素形成的空中3. “定序”问题在排列问题中,某些元素在题意中已排定了顺序,对这些元素进行排列时,不再考虑其顺序. 在具体的计算过程中,可采用“除阶乘法”解决,即n个元素的全排列中有m(mn)个元素的顺序固定,则满足题意的
7、排法有AnnAmm种. 7. 3组合一、组合、组合数的概念1. 组合:一般地,从n个不同元素中取出m(mn)个元素并成一组,叫作从n个不同元素中取出m个元素的一个组合. 2. 组合数:从n个不同元素中取出m(mn)个元素的所有组合的个数,叫作从n个不同元素中取出m个元素的组合数,用符号Cnm表示. 二、组合数公式与性质1. 公式:Cnm=AnmAmm=n(n1)(n2)(nm+1)m!=n!m!(nm)!. (n,mN*,并且mn)2. 特殊组合数:Cn0=1, Cn1=n, Cnn=1. 3. 组合数的性质:Cnm=Cnnm,Cn+1m=Cnm1+Cnm. 三、组合数的性质与运算1. 组合数
8、公式的主要适用范围形式主要适用范围乘积式Cnm=n(n1)(n2)(nm+1)m(m1)(m2)321含具体数字的组合数的求值阶乘式Cnm=n!m!(nm)!含字母的组合数的有关变形及证明2. 组合数的性质及应用(1)性质“Cnm=Cnnm”的意义及作用(2)性质“Cn+1m=Cnm1+Cnm”的顺用、逆用、变形用顺用是将一个组合数拆成两个;逆用则是“合二为一”;变形式Cnm=Cn+1m-Cnm1,为某些项相互抵消提供了方便,在解题时要注意灵活运用. 四、分组与分配问题分组问题和分配问题是有区别的,前者是组与组之间只要元素个数相同,就是不可区分的,而后者即使两组元素个数相同,但因元素不同,仍然
展开阅读全文