人教初中数学九上《圆(第4课时)》课件-(高效课堂)获奖-人教数学2022-.ppt
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《人教初中数学九上《圆(第4课时)》课件-(高效课堂)获奖-人教数学2022-.ppt》由用户(ziliao2023)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 圆第4课时 初中 数学 课时 课件 高效 课堂 获奖 2022 下载 _九年级上册_人教版(2024)_数学_初中
- 资源描述:
-
1、圆的有关性质第圆的有关性质第4课时课时 本课是在学习了垂径定理、圆心角及弧、弦、圆心角本课是在学习了垂径定理、圆心角及弧、弦、圆心角的关系的根底上探究同弧或等弧所对圆周角之间的关系的根底上探究同弧或等弧所对圆周角之间以及圆周角与圆心角之间的数量关系以及圆周角与圆心角之间的数量关系课件说课件说明明 学习目标:学习目标:1了解并证明圆周角定理及其推论;了解并证明圆周角定理及其推论;2经历探究同弧或等弧所对圆周角与圆心角之经历探究同弧或等弧所对圆周角与圆心角之 间的关系的过程,进一步体会分类讨论、转化的间的关系的过程,进一步体会分类讨论、转化的 思想方法思想方法 学习重点:学习重点:圆周角定理圆周角
2、定理课件说课件说明明 1思考和练习思考和练习图中图中ACB 的顶点和边有哪些特点?的顶点和边有哪些特点?AOBC顶点顶点在圆上,并且在圆上,并且两边两边都和圆相交的角叫圆周角都和圆相交的角叫圆周角如:如:ACB教科书教科书 88 页练习页练习 11思考和思考和练习练习图中图中ACB 和和AOB 有怎样的关系?有怎样的关系?2探究探究BCOAAOBACB212探究探究BCOABCOA(1)在圆上任取)在圆上任取 ,画出圆心角,画出圆心角BOC 和圆周角和圆周角BAC,圆心角与圆周角有几种位置关系?,圆心角与圆周角有几种位置关系?BCBCOA2如图,如何证明一条弧所对的圆周角等于它如图,如何证明一
3、条弧所对的圆周角等于它所对的圆心角的一半?所对的圆心角的一半?3证明猜测BCOAOA=OC,A=C又BOC=A+C,BOCBAC21我们来分析上页的前两种情况,第三种情况请同学我们来分析上页的前两种情况,第三种情况请同学们完成证明们完成证明3如图,如何证明一条弧所对的圆周角等于它如图,如何证明一条弧所对的圆周角等于它所对的圆心角的一半?所对的圆心角的一半?D3证明猜测BCOA证明:如图,连接证明:如图,连接 AO 并延长交并延长交 O 于点于点 DOA=OB,BAD=B又BOD=BAD+B,BODBAD21CODCAD21同理,同理,BOCCADBADBAC213证明猜测 圆周角定理:圆周角定
4、理:一条弧所对的圆周角等于它所对的圆心角的一半一条弧所对的圆周角等于它所对的圆心角的一半思考:思考:一条弧所对的圆周角之间有什么关系?同弧或等弧一条弧所对的圆周角之间有什么关系?同弧或等弧所对的圆周角之间有什么关系?所对的圆周角之间有什么关系?同弧或等弧所对的圆周角相等同弧或等弧所对的圆周角相等4探究探究ADBCO思考:思考:半圆或直径所对的圆周角有什么特殊性?半圆或直径所对的圆周角有什么特殊性?半圆或直径所对的圆周角是直角,半圆或直径所对的圆周角是直角,90的圆周的圆周角所对的弦是直径角所对的弦是直径.4探究探究C1AOBC2C3如图,如图,O 的直径的直径 AB 为为 10 cm,弦,弦
5、AC 为为 6 cm,ACB 的平分线交的平分线交 O 于点于点 D,求,求 BC,AD,BD 的长的长5应用应用解:连接解:连接 OD,AD,BD,ACBDO22ACAB 22610 AB 是是 O 的直径,的直径,ACB=ADB=90在在 RtABC 中,中,BC=8(cm)如图,如图,O 的直径的直径 AB 为为 10 cm,弦,弦 AC 为为 6 cm,ACB 的平分线交的平分线交 O 于点于点 D,求,求 BC,AD,BD 的长的长5应用应用ACBDOCD 平分平分ACB,ACD=BCD,AOD=BOD AD=BD 在在 RtABD 中,中,AD2+BD2=AB2,AD=BD=AB2
6、2=(cm)251本节课学习了哪些主要内容?本节课学习了哪些主要内容?2我们是怎样探究圆周角定理的?在证明过程我们是怎样探究圆周角定理的?在证明过程中用到了哪些思想方法?中用到了哪些思想方法?6课堂小结课堂小结 轴对称轴对称引言引言对称现象无处不在,从自然景观到艺术作对称现象无处不在,从自然景观到艺术作品,从建筑物到交通标志,甚至日常生活用品,都可品,从建筑物到交通标志,甚至日常生活用品,都可以找到对称的例子,对称给我们带来美的感受!以找到对称的例子,对称给我们带来美的感受!引出新知引出新知探索新知探索新知问题问题1 1如图,把一张纸对折,剪出一个图案折如图,把一张纸对折,剪出一个图案折痕处不
7、要完全剪断,再翻开这张对折的纸,就得到了痕处不要完全剪断,再翻开这张对折的纸,就得到了美丽的窗花观察得到的窗花,你能发现它们有什么共美丽的窗花观察得到的窗花,你能发现它们有什么共同的特点吗?同的特点吗?追问追问你能举出一些轴对称图形的例子吗?你能举出一些轴对称图形的例子吗?探索新知探索新知如果一个平面图形沿一条直线折叠,直线两旁的部如果一个平面图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形就叫做轴对称图形,这条直分能够互相重合,这个图形就叫做轴对称图形,这条直 线就是它的对称轴这时,我们也说这个图形关于这条线就是它的对称轴这时,我们也说这个图形关于这条 直线成轴对称直线成轴对称共同特
展开阅读全文