书签 分享 收藏 举报 版权申诉 / 43
上传文档赚钱

类型人教初中数学九上-《点和圆的位置关系》课件-(高效课堂)获奖-人教数学20222-.ppt

  • 上传人(卖家):ziliao2023
  • 文档编号:6672634
  • 上传时间:2023-07-26
  • 格式:PPT
  • 页数:43
  • 大小:1.25MB
  • 【下载声明】
    1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
    2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
    3. 本页资料《人教初中数学九上-《点和圆的位置关系》课件-(高效课堂)获奖-人教数学20222-.ppt》由用户(ziliao2023)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
    4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
    5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
    配套讲稿:

    如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。

    特殊限制:

    部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。

    关 键  词:
    点和圆的位置关系 初中 数学 位置 关系 课件 高效 课堂 获奖 20222 下载 _九年级上册_人教版(2024)_数学_初中
    资源描述:

    1、24.2.124.2.1点和圆的位置关系点和圆的位置关系 探究探究:1、请你在练习本上画一个圆,然后任、请你在练习本上画一个圆,然后任意作一些点,观察这些点和圆的位置关系。意作一些点,观察这些点和圆的位置关系。2、量一量这些点到圆心的距离。你发现、量一量这些点到圆心的距离。你发现了什么?了什么?点与圆的位置关系点与圆的位置关系圆外的点圆外的点圆内的点圆内的点圆上的点圆上的点 平面上的一个圆,把平面上的点分成三类:圆上的点,圆内的点和圆外的点。圆的内部可以看成是到圆心的距离小于半径的的点的集合;圆的外部可以看成是到圆心的距离大于半径的点的集到圆心的距离大于半径的点的集合合 。思考:平面上的一个圆

    2、把平面上的点分成哪几部分?设设 O的半径为的半径为r,点到圆心的距离为,点到圆心的距离为d。则。则点和圆的位置关系点和圆的位置关系点在圆内点在圆内dr点在圆上点在圆上点在圆外点在圆外drdr练习:已知圆的半径等于练习:已知圆的半径等于5厘米,点到圆心的距离是:厘米,点到圆心的距离是:1、8厘米厘米 2、4厘米厘米 3、5厘米。厘米。请你分别说出点与圆的位置关系请你分别说出点与圆的位置关系。2问:如图已知矩形问:如图已知矩形ABCD的边的边AB=3厘米,厘米,AD=4厘米厘米ADCB(1)以点A为圆心,3厘米为半径作圆A,则点B、C、D与圆A的位置关系如何?(B在圆上,D在圆外,C在圆外)(2)

    3、以点A为圆心,4厘米为半径作圆A,则点B、C、D与圆A的位置关系如何?(B在圆内,D在圆上,C在圆外)(3)以点A为圆心,5厘米为半径作圆A,则点B、C、D与圆A的位置关系如何?(B在圆内,D在圆内,C在圆上)练一练练一练 1、O的半径的半径10cm,A、B、C三点到圆心的距离分别为三点到圆心的距离分别为8cm、10cm、12cm,则点,则点A、B、C与与 O的位置关系是:的位置关系是:点点A在在 ;点;点B在在 ;点;点C在在 。2、O的半径的半径6cm,当,当OP=6时,点时,点P在在 ;当当OP 时点时点P在圆内;当在圆内;当OP 时,点时,点P不在圆外。不在圆外。3、正方形正方形ABC

    4、D的边长为的边长为2cm,以,以A为圆心为圆心2cm为半为半径作径作 A,则点,则点B在在 A ;点;点C在在 A ;点;点D在在 A 。圆内圆内圆上圆上圆外圆外圆上圆上66上上外外上上 4、已知已知AB为为 O的的直径直径P为为 O 上任意一点,则点上任意一点,则点关于关于AB的对称点的对称点P与与 O的位置为的位置为()(A)在在 O内内 (B)在在 O 外外(C)在在 O 上上(D)不能确定不能确定c2cmDcAB练习 例例2、填空:、填空:1、已知、已知 O的半径为的半径为4,OP,则,则P在在 O的的()。)。2、已知、已知 点点P在在 O的外部,的外部,OP5,那么,那么 O的半径

    5、的半径r满足(满足()3、已知已知 O的半径为的半径为5,M为为ON的中点,当的中点,当OM3时,时,N点与点与 O的位置关系是的位置关系是N在在 O的(的()内部内部0r 5外部外部 1、平面上有一点A,经过已知A点的圆有几个?圆心在哪里?探究(1)OAOOOO 无数个,圆心为点A以外任意一点,半径为这点与点A的距离 2、平面上有两点A、B,经过已知点A、B的圆有几个?它们的圆心分布有什么特点?探究(2)O OOOAB以线段以线段ABAB的垂直平分线上的任意一点为的垂直平分线上的任意一点为圆心圆心,以这点以这点到到A A或或B B的距离为的距离为半径半径作圆作圆.无数个。它们的圆心都在线段无

    6、数个。它们的圆心都在线段ABAB的垂直平分线上。的垂直平分线上。归纳结论归纳结论:不在同一条直线上不在同一条直线上的三个点确定一个圆的三个点确定一个圆。探究(3)BC经过经过B,CB,C两点的圆的两点的圆的圆心圆心在线段在线段ABAB的垂直平分线上的垂直平分线上.An经过经过A,B,CA,B,C三点的圆的三点的圆的圆心圆心应该这应该这两条垂直平分线的两条垂直平分线的交点交点O O的位置的位置.O经过经过A,BA,B两点的圆的两点的圆的圆心圆心在线段在线段ABAB的垂直平分线上的垂直平分线上.过同一平面内三个点的情况过同一平面内三个点的情况会怎样呢?会怎样呢?1、不在同一直线上的三点、不在同一直

    7、线上的三点A、B、C。2.过在同一直线上的三点过在同一直线上的三点A、B、C可以作几个圆?可以作几个圆?动手画一画动手画一画 ABC不能作出。不能作出。为什么?为什么?经过三角形三个顶点可以画一个圆,并且只能画一个一个三角形的外接圆有几个?一个三角形的外接圆有几个?一个圆的内接三角形有几个?一个圆的内接三角形有几个?经过三角形三个顶点的圆叫做三角形的外接圆。三角形的外心就是三角形三角形的外心就是三角形三条边的垂直平分三条边的垂直平分线的交点线的交点,它到三角形三个顶点的距离相等。,它到三角形三个顶点的距离相等。这个三角形叫做这个圆的这个三角形叫做这个圆的内接三角形内接三角形。三角形外接圆的圆心

    8、叫做这个三角形的外心。OABC 有关概念有关概念 分别画一个锐角三角形、直角三角形和钝角三角形,再画出它们的外接圆,观察并叙述各三角形与它的外心的位置关系.做一做锐角三角形的外心位于三角形内,直角三角形的外心位于直角三角形斜边中点,钝角三角形的外心位于三角形外.ABCOABCCABOO练习例例1、判断:、判断:1、经过三点一定可以作圆。(、经过三点一定可以作圆。()2、三角形的外心就是这个三角形两边垂直平分线的、三角形的外心就是这个三角形两边垂直平分线的交点。(交点。()3、三角形的外心到三边的距离相等。(、三角形的外心到三边的距离相等。()4、经过不在一直线上的四点能作一个圆。(、经过不在一

    9、直线上的四点能作一个圆。()练一练 1 1、判断下列说法是否正确、判断下列说法是否正确(1)(1)任意的一个三角形一定有一个外接圆任意的一个三角形一定有一个外接圆().().(2)(2)任意一个圆有且只有一个内接三角形任意一个圆有且只有一个内接三角形()()(3)(3)三角形的外心到三角形各顶点的距离相等三角形的外心到三角形各顶点的距离相等()()2 2、若一个三角形的外心在一边上,则此三角形的、若一个三角形的外心在一边上,则此三角形的 形状为形状为()()A A、锐角三角形、锐角三角形 B B、直角三角形、直角三角形 C C、钝角三角形、钝角三角形 D D、等腰三角形、等腰三角形B 如图,已

    10、知等边三角形如图,已知等边三角形ABC中,边长为中,边长为6cm,求它的外接圆半径。,求它的外接圆半径。典型例题典型例题OEDCBA1、如图,已知、如图,已知 RtABC 中中,若若 AC=12cm,BC=5cm,求的外接圆半径。求的外接圆半径。90CACB如图,等腰如图,等腰ABC中,中,求外接圆的半径。,求外接圆的半径。13ABACcm10BCcmOADCB 一位考古学家在马王堆汉墓挖掘时,发现一一位考古学家在马王堆汉墓挖掘时,发现一圆形瓷器碎片,你能帮助这位考古学家画出这圆形瓷器碎片,你能帮助这位考古学家画出这个碎片所在的整圆,以便于进行深入的研究吗?个碎片所在的整圆,以便于进行深入的研

    11、究吗?应用 某一个城市在一块空地新建了三个居某一个城市在一块空地新建了三个居民小区,它们分别为民小区,它们分别为A、B、C,且三个小,且三个小区不在同一直线上,要想规划一所中学,区不在同一直线上,要想规划一所中学,使这所中学到三个小区的距离相等。请问使这所中学到三个小区的距离相等。请问同学们这所中学建在哪个位置?你怎么确同学们这所中学建在哪个位置?你怎么确定这个位置呢?定这个位置呢?BAC这节课你学到了哪些知识?有这节课你学到了哪些知识?有什么感想什么感想?回顾回顾与与思考思考作业:作业:P95 1 P101 1再 见!轴对称轴对称引言引言对称现象无处不在,从自然景观到艺术作对称现象无处不在,

    12、从自然景观到艺术作品,从建筑物到交通标志,甚至日常生活用品,都可品,从建筑物到交通标志,甚至日常生活用品,都可以找到对称的例子,对称给我们带来美的感受!以找到对称的例子,对称给我们带来美的感受!引出新知引出新知探索新知探索新知问题问题1如图,把一张纸对折,剪出一个图案(折如图,把一张纸对折,剪出一个图案(折痕处不要完全剪断),再打开这张对折的纸,就得到了痕处不要完全剪断),再打开这张对折的纸,就得到了美丽的窗花观察得到的窗花,你能发现它们有什么共美丽的窗花观察得到的窗花,你能发现它们有什么共同的特点吗?同的特点吗?追问追问你能举出一些轴对称图形的例子吗?你能举出一些轴对称图形的例子吗?探索新知

    13、探索新知如果一个平面图形沿一条直线折叠,直线两旁的部如果一个平面图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形就叫做轴对称图形,这条直分能够互相重合,这个图形就叫做轴对称图形,这条直 线就是它的对称轴这时,我们也说这个图形关于这条线就是它的对称轴这时,我们也说这个图形关于这条 直线(成轴)对称直线(成轴)对称共同特征:共同特征:每一对图形沿着虚线折叠,左边的图形都能与右边每一对图形沿着虚线折叠,左边的图形都能与右边的图形重合的图形重合 探索新知探索新知问题问题2观察下面每对图形(如图),你能类比前观察下面每对图形(如图),你能类比前面的内容概括出它们的共同特征吗?面的内容概括出它们的

    14、共同特征吗?追问追问1你能再举出一些两个图形成轴对称的例子吗?你能再举出一些两个图形成轴对称的例子吗?探索新知探索新知把一个图形沿着某一条直线折叠,如果它能够与另把一个图形沿着某一条直线折叠,如果它能够与另一个图形重合,那么就说这两个图形关于这条直线(成一个图形重合,那么就说这两个图形关于这条直线(成轴)对称,这条直线叫做对称轴,折叠后重合的点是对轴)对称,这条直线叫做对称轴,折叠后重合的点是对应点,叫做对称点应点,叫做对称点 两者的区别:两者的区别:轴对称图形指的是一个图形沿对称轴折叠后这个图轴对称图形指的是一个图形沿对称轴折叠后这个图形的两部分能完全重合,而两个图形成轴对称指的是两形的两部

    15、分能完全重合,而两个图形成轴对称指的是两个图形之间的位置关系,这两个图形沿对称轴折叠后能个图形之间的位置关系,这两个图形沿对称轴折叠后能够重合够重合探索新知探索新知追问追问2你能结合具体的图形说明轴对称图形和两个你能结合具体的图形说明轴对称图形和两个 图形成轴对称有什么区别与联系吗图形成轴对称有什么区别与联系吗?两者的联系:两者的联系:把成轴对称的两个图形看成一个整体,它就是一个把成轴对称的两个图形看成一个整体,它就是一个轴对称图形把一个轴对称图形沿对称轴分成两个图轴对称图形把一个轴对称图形沿对称轴分成两个图形,这两个图形关于这条轴对称形,这两个图形关于这条轴对称 探索新知探索新知追问追问2你

    16、能结合具体的图形说明轴对称图形和两个你能结合具体的图形说明轴对称图形和两个 图形成轴对称有什么区别与联系吗图形成轴对称有什么区别与联系吗?追问追问1你能说明其中你能说明其中的道理吗?的道理吗?探索新知探索新知问题问题3如图,如图,ABC 和和ABC关于直线关于直线MN 对称,点对称,点A,B,C分别是点分别是点A,B,C 的对称点,线的对称点,线 段段AA,BB,CC与直线与直线MN 有什么关系?有什么关系?ABCMNPABC探索新知探索新知追问追问2上面的问题说明上面的问题说明“如果如果ABC 和和ABC关于直线关于直线MN 对称,那么,直线对称,那么,直线MN 垂直垂直线段线段AA,BB和

    17、和CC,并且直线,并且直线MN 还平分线段还平分线段AA,BB和和CC”如如果将其中的果将其中的“三角形三角形”改为改为“四边形四边形”“”“五边形五边形”其其他条件不变,上述结论还成他条件不变,上述结论还成立吗?立吗?ABCMNPABC经过线段中点并且垂直经过线段中点并且垂直于这条线段的直线,叫做这于这条线段的直线,叫做这条线段的垂直平分线条线段的垂直平分线 探索新知探索新知问题问题3如图,如图,ABC 和和ABC关于直线关于直线MN 对称,点对称,点A,B,C分别是点分别是点A,B,C 的对称点,线的对称点,线段段AA,BB,CC与直线与直线MN 有什么关系?有什么关系?ABCMNPABC

    18、探索新知探索新知追问追问3你能用数学语言概括前面的结论吗?你能用数学语言概括前面的结论吗?成轴对称的两个图形的性质:成轴对称的两个图形的性质:如果两个图形关于某条如果两个图形关于某条直线对称,那么对称轴是任直线对称,那么对称轴是任何一对对应点所连线段的垂何一对对应点所连线段的垂直平分线即对称点所连线直平分线即对称点所连线段被对称轴垂直平分;对称段被对称轴垂直平分;对称轴垂直平分对称点所连线段轴垂直平分对称点所连线段 ABCMNPABC结论:结论:直线直线l 垂直线段垂直线段AA,BB,直线直线l平分线段平分线段AA,BB(或直(或直线线l 是线段是线段AA,BB的垂直平分的垂直平分线)线)探索

    19、新知探索新知问题问题4下图是一个轴对称图形,你能发现什么结下图是一个轴对称图形,你能发现什么结 论?能说明理由吗?论?能说明理由吗?ABlAB追问你能用数学语言概括前面追问你能用数学语言概括前面的结论吗?的结论吗?探索新知探索新知问题问题4下图是一个轴对称图形,你能发现什么结下图是一个轴对称图形,你能发现什么结论?能说明理由吗?论?能说明理由吗?ABlAB轴对称图形的性质:轴对称图形的性质:轴对称图形的对称轴,是任何轴对称图形的对称轴,是任何一对对应点所连线段的垂直平分线一对对应点所连线段的垂直平分线 探索新知探索新知问题问题4下图是一个轴对称图形,你能发现什么结下图是一个轴对称图形,你能发现

    20、什么结 论?能说明理由吗?论?能说明理由吗?ABlAB课堂练习课堂练习练习练习1 1如图所示的每个图形是轴对称图形吗?如如图所示的每个图形是轴对称图形吗?如果是,指出它的对称轴果是,指出它的对称轴 课堂练习课堂练习练习练习2如图所示的每幅图形中的两个图案是轴对称如图所示的每幅图形中的两个图案是轴对称的吗?如果是,试着找出它们的对称轴,并找出一对对的吗?如果是,试着找出它们的对称轴,并找出一对对称点称点 (1)本节课学习了哪些主要内容?)本节课学习了哪些主要内容?(2)轴对称图形和两个图形成轴对称的区别与联系是)轴对称图形和两个图形成轴对称的区别与联系是 什么?什么?(3)成轴对称的两个图形有什么性质?轴对称图形有)成轴对称的两个图形有什么性质?轴对称图形有 什么性质?我们是怎么探究这些性质的?什么性质?我们是怎么探究这些性质的?课堂小结课堂小结教科书习题教科书习题13.1第第1、2、3、4、5题题 布置作业布置作业

    展开阅读全文
    提示  163文库所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
    关于本文
    本文标题:人教初中数学九上-《点和圆的位置关系》课件-(高效课堂)获奖-人教数学20222-.ppt
    链接地址:https://www.163wenku.com/p-6672634.html

    Copyright@ 2017-2037 Www.163WenKu.Com  网站版权所有  |  资源地图   
    IPC备案号:蜀ICP备2021032737号  | 川公网安备 51099002000191号


    侵权投诉QQ:3464097650  资料上传QQ:3464097650
       


    【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。

    163文库