人教初中数学九上-《第24章《圆》课件切线的判定》课件-(高效课堂)获奖-人教数学2022-.ppt
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《人教初中数学九上-《第24章《圆》课件切线的判定》课件-(高效课堂)获奖-人教数学2022-.ppt》由用户(ziliao2023)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 第24章【圆 初中 数学 24 课件 切线 判定 高效 课堂 获奖 2022 下载 _九年级上册_人教版(2024)_数学_初中
- 资源描述:
-
1、切 线 的 判 定复复 习习:1.1.直线和圆有哪些位置关系?直线和圆有哪些位置关系?2.2.什么叫相切?什么叫相切?3.3.我们学习过哪些切线的判断方法?我们学习过哪些切线的判断方法?想一想判 断1.过半径的外端的直线是圆的切线过半径的外端的直线是圆的切线 2.与半径垂直的的直线是圆的切线与半径垂直的的直线是圆的切线 3.过半径的端点与半径垂直的直线是圆的切线过半径的端点与半径垂直的直线是圆的切线 想一想例1:直线:直线AB经过经过 O上的点上的点C,并且,并且OA=OB,CA=CB。求证:直线求证:直线AB是是 O的切线。的切线。分析:由于分析:由于ABAB过过O O上的点上的点C C,所
2、以连接,所以连接OCOC,只要证明,只要证明 ABOCABOC即可。即可。证明:连结证明:连结OC(OC(如图如图)。OAOAOB,CAOB,CACB,CB,OC OC是等腰三角形是等腰三角形OABOAB底边底边ABAB上的中线。上的中线。ABOCABOC。OCOC是是O O的半径的半径 ABAB是是O O的切线。的切线。例2证明:过证明:过O O作作OEACOEAC于于E E。AOAO平分平分BACBAC,ODABODAB OE OEODOD OD OD是是O O的半径的半径 ACAC是是O O的切线。的切线。小 结例例1 1与例与例2 2的证法有何不同的证法有何不同?(1)(1)如果直线经
3、过圆上一点如果直线经过圆上一点,那么连结这点和那么连结这点和圆心圆心,得到辅助半径得到辅助半径,再证所作半径与这直线垂直。再证所作半径与这直线垂直。简记为:连半径简记为:连半径,证垂直。证垂直。(2)(2)如果条件中不知直线与圆是否有公共点如果条件中不知直线与圆是否有公共点,那么过圆心作直线的垂线段为辅助线那么过圆心作直线的垂线段为辅助线,再证垂线段再证垂线段长等于半径长。简记为:作垂直长等于半径长。简记为:作垂直,证半径。证半径。练 习证明:连结证明:连结OPOP。AB=AC,B=CAB=AC,B=C。OB=OPOB=OP,B=OPBB=OPB,OBP=COBP=C。OPACOPAC。PEA
4、CPEAC,PEOPPEOP。PEPE为为0 0的切线。的切线。练 习课堂小结1.1.判定切线的方法有哪些?判定切线的方法有哪些?直线直线l 与圆有唯一公共点与圆有唯一公共点与圆心的距离等于圆的半径与圆心的距离等于圆的半径经过半径外端且垂直这条半径经过半径外端且垂直这条半径l是圆的切线是圆的切线2.2.常用的添辅助线方法?常用的添辅助线方法?直线与圆的公共点时,作出过公共点的半径,直线与圆的公共点时,作出过公共点的半径,再证半径垂直于该直线。连半径,证垂直再证半径垂直于该直线。连半径,证垂直 直线与圆的公共点不确定时,过圆心作直线的直线与圆的公共点不确定时,过圆心作直线的垂线段,再证明这条垂线
5、段等于圆的半径。作垂垂线段,再证明这条垂线段等于圆的半径。作垂直,证半径直,证半径l是圆的切线是圆的切线l是圆的切线是圆的切线作业:P98,1 P101,4 轴对称轴对称引言引言对称现象无处不在,从自然景观到艺术作对称现象无处不在,从自然景观到艺术作品,从建筑物到交通标志,甚至日常生活用品,都可品,从建筑物到交通标志,甚至日常生活用品,都可以找到对称的例子,对称给我们带来美的感受!以找到对称的例子,对称给我们带来美的感受!引出新知引出新知探索新知探索新知问题问题1 1如图,把一张纸对折,剪出一个图案折如图,把一张纸对折,剪出一个图案折痕处不要完全剪断,再翻开这张对折的纸,就得到了痕处不要完全剪
6、断,再翻开这张对折的纸,就得到了美丽的窗花观察得到的窗花,你能发现它们有什么共美丽的窗花观察得到的窗花,你能发现它们有什么共同的特点吗?同的特点吗?追问追问你能举出一些轴对称图形的例子吗?你能举出一些轴对称图形的例子吗?探索新知探索新知如果一个平面图形沿一条直线折叠,直线两旁的部如果一个平面图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形就叫做轴对称图形,这条直分能够互相重合,这个图形就叫做轴对称图形,这条直 线就是它的对称轴这时,我们也说这个图形关于这条线就是它的对称轴这时,我们也说这个图形关于这条 直线成轴对称直线成轴对称共同特征:共同特征:每一对图形沿着虚线折叠,左边的图形都能与
展开阅读全文
链接地址:https://www.163wenku.com/p-6672630.html