人教初中数学九上《一元二次方程的解法复习》课件-(高效课堂)获奖-人教数学2022-.ppt
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《人教初中数学九上《一元二次方程的解法复习》课件-(高效课堂)获奖-人教数学2022-.ppt》由用户(ziliao2023)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 一元二次方程的解法复习 初中 数学 一元 二次方程 解法 复习 课件 高效 课堂 获奖 2022 下载 _九年级上册_人教版(2024)_数学_初中
- 资源描述:
-
1、你学过一元二次方程的哪些解法你学过一元二次方程的哪些解法?因式分解法因式分解法开平方法开平方法配方法配方法公式法公式法你能说出每一种解法的特点吗你能说出每一种解法的特点吗?方程的左边是完全平方式方程的左边是完全平方式,右边是非负数右边是非负数;即形如即形如x2=a(a0)a ax x,a ax x2 21 11.化化1:把二次项系数化为把二次项系数化为1;2.移项移项:把常数项移到方程的右边把常数项移到方程的右边;3.配方配方:方程两边同加方程两边同加一次项系数一次项系数 一半的平方一半的平方;4.变形变形:化成化成5.5.开平方开平方,求解求解(x xm m)a a+=2 2“配方法解方程的
2、根本步配方法解方程的根本步骤:骤:一除、二移、三配、四化、五解一除、二移、三配、四化、五解.用用公式法公式法解一元二次方程的解一元二次方程的前提前提是是:1.1.必需是一般形式的一元二次方程必需是一般形式的一元二次方程:ax ax2 2+bx+c=0(a0).+bx+c=0(a0).2 2-4ac0.-4ac0.0 04ac4acb b.2a2a4ac4acb bb bx x2 22 21.1.用因式分解法的用因式分解法的条件条件是是:方程左边能够方程左边能够 分解分解,而右边等于零而右边等于零;2.2.理论理论依据依据是是:如果两个因式的积等于零如果两个因式的积等于零 那么至少有一个因式等于
3、零那么至少有一个因式等于零.因式分解法解一元二次方程的一般因式分解法解一元二次方程的一般步骤步骤:一移一移-方程的右边方程的右边=0;=0;二分二分-方程的左边因式分解方程的左边因式分解;三化三化-方程化为两个一元一次方程方程化为两个一元一次方程;四解四解-写出方程两个解写出方程两个解;一一元元二二次次方方程程一元二次方程的定义一元二次方程的定义一元二次方程的解法一元二次方程的解法一元二次方程的应用一元二次方程的应用把握住:把握住:一个未知数,最高次数是一个未知数,最高次数是2,整式方程整式方程一般形式:一般形式:ax+bx+c=0a0直接开平方法:直接开平方法:适应于形如适应于形如x-k=h
4、h0型型 配方法:配方法:适应于任何一个一元二次方程适应于任何一个一元二次方程公式法:公式法:适应于任何一个一元二次方程适应于任何一个一元二次方程因式分解法:因式分解法:适应于左边能分解为两个一次式的积,适应于左边能分解为两个一次式的积,右边是右边是0的方程的方程请用四种方法解以下方程请用四种方法解以下方程:4(x 4(x1)2=(2x1)2=(2x5)25)2先考虑开平方法先考虑开平方法,再用因式分解法再用因式分解法;最后才用公式法和配方法最后才用公式法和配方法;1.关于关于y的一元二次方程的一元二次方程2y(y-3)=-4的一般形式是的一般形式是_,它的二次项系数是它的二次项系数是_,一次
5、项是一次项是_,常数项是常数项是_2y2-6y+4=02-6y4B3.假设假设x=2是方程是方程x2+ax-8=0的解,那么的解,那么a=2 2.请判断下列哪个方程是一元二次方程 21A xy 250B x 238C xx3862DxxC4.下面是某同学在一次数学测验中解答的填空题,下面是某同学在一次数学测验中解答的填空题,其中答对的是其中答对的是 A、假设、假设x2=4,那么,那么x=2 B、假设、假设3x2=6x,那么那么x=2C、假设、假设x2+x-k=0的一个根是的一个根是1,那么,那么k=223222xxxxD、若的值为零,则3.公式法公式法:221.222.530 xx xxx按要
6、求解下列方程:因式分解法:3配方法:2 2112112 2xxyyy总结:方程中有括号时,应先用整体思想考虑有没有简总结:方程中有括号时,应先用整体思想考虑有没有简单方法,假设看不出适宜的方法时,那么把它去括号并单方法,假设看不出适宜的方法时,那么把它去括号并整理为一般形式再选取合理的方法。整理为一般形式再选取合理的方法。1、填空:、填空:x x2 2-3x+1=0 -3x+1=0 3x 3x2 2-1=0 -1=0 -3t -3t2 2+t=0+t=0 x x2 2-4x=2 -4x=2 2x 2x2 2x=0 x=0 5(m+2)5(m+2)2 2=8=8 3y 3y2 2-y-1=0 -
7、y-1=0 2x 2x2 2+4x-1=0 +4x-1=0 (x-2)(x-2)2 2=2(x-2)=2(x-2)适合运用直接开平方法适合运用直接开平方法 适合运用因式分解法适合运用因式分解法 适合运用公式法适合运用公式法 适合运用配方法适合运用配方法 3x3x2 2-1=0-1=0 5(m+2)5(m+2)2 2=8=8 -3t-3t2 2+t=0+t=0 2x2x2 2x=0 x=0 (x-2)(x-2)2 2=2(x-2)=2(x-2)x x2 2-3x+1=0-3x+1=0 3y3y2 2-y-1=0-y-1=0 2x2x2 2+4x-1=0+4x-1=0 x x2 2-4x=2-4x
8、=2 规律:一般地,当一元二次方程一次项系数为0时ax2+c=0,应选用直接开平方法;假设常数项为0 ax2+bx=0,应选用因式分解法;假设一次项系数和常数项都不为0(ax2+bx+c=0,先化为一般式,看一边的整式是否容易因式分解,假设容易,宜选用因式分解法,不然选用公式法;不过当二次项系数是1,且一次项系数是偶数时,用配方法也较简单。公式法虽然是万能的,对任何一元二次方程都适用,但不一定公式法虽然是万能的,对任何一元二次方程都适用,但不一定是最简单的,因此在解方程时我们首先考虑能否应用是最简单的,因此在解方程时我们首先考虑能否应用“直接开平直接开平方法、方法、“因式分解法等简单方法,假设
9、不行,再考虑公式法因式分解法等简单方法,假设不行,再考虑公式法适当也可考虑配方法适当也可考虑配方法练习:用最好的方法求解以下方程练习:用最好的方法求解以下方程1)3x-2-49=0 2)3x-4=4x-3 3)4y=1 y23 解解:(3x-2)=49 3x-2=7 x=x1=3,x2=35372解:解:法一法一:3x-4=4x-33x-4=4x-3或或3x-4=-4x+3-x=1或或 7x=7 x1=-1,x2=1法二法二:(3x-4)(4x-3)2=0 (3x-4+4x-3)(3x-4x+3)=0 (7x-7)(-x-1)=0 7x-7=0或或-x-1=0 x1=-1,x2=1 解:解:3
10、y8y 2=0 b 4ac=64 4 3(-2)=88X=68883224,322421xx选择适当的方法解以下方程选择适当的方法解以下方程:x x2 22 21 1)1 1)(x x(x x8 81 1)(3 3x x1 1)(2 2x x7 78 84 49 97 7)x x(2 2x x6 6 2 2x x7 7)x x(3 3x x5 59 9x x2 2)(x x4 4 4 4x x1 13 3x x3 32 2x x5 5x x2 2 1 1x x2 25 51 16 61 12 22 22 22 22 22 22 2ax2+c=0 =ax2+bx=0 =ax2+bx+c=0 =因
展开阅读全文