人教初中数学九上《实际问题与一元二次方程(第3课时)》课件-(高效课堂)获奖-人教数学20221-.ppt
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《人教初中数学九上《实际问题与一元二次方程(第3课时)》课件-(高效课堂)获奖-人教数学20221-.ppt》由用户(ziliao2023)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 实际问题与一元二次方程第3课时 初中 数学 实际问题 一元 二次方程 课时 课件 高效 课堂 获奖 20221 下载 _九年级上册_人教版(2024)_数学_初中
- 资源描述:
-
1、实际问题与一元二次方程实际问题与一元二次方程第第3 3课时用一元二次方程解决几何图形问题课时用一元二次方程解决几何图形问题面积(体积)1面积(体积)问题属于几何图形的应用题,解决问题的关键是将不规则图形分割或组合、平移成规则图形,找出未知量与_的内在联系,根据_公式列出一元二次方程2一个正方形的边长增加了3 cm,面积相应增加了39 cm2,则原来这个正方形的边长为_cm.已知量5知识点1:一般图形的面积问题1一个面积为35 m2的矩形苗圃,它的长比宽多2 m,则这个苗圃的长为()A5 mB6 mC7 mD8 m2(2014襄阳)用一条长40 cm的绳子围成一个面积为64 cm2的长方形设长方
2、形的长为x cm,则可列方程为()Ax(20 x)64 Bx(20 x)64Cx(40 x)64 Dx(40 x)643一个直角三角形的两条直角边相差5 cm,面积是7 cm2,这两条直角边长分别为_C2cm,7cmB4(2014湘潭)如图,某中学准备在校园里利用围墙的一段,再砌三面墙,围成一个矩形花园ABCD(围墙MN最长可利用25 m),现在已备足可以砌50 m长的墙的材料,试设计一种砌法,使矩形花园的面积为300 m2.解:设AB x m,则BC(502x)m,根据题意得x(502x)300,解得x110,x215,当x10,BC502103025,故x110不合题意,舍去,x15,则可
3、以围成AB为15 m,BC为20 m的矩形 知识点2:边框与通道问题5如图,在宽为20 m,长为32 m的矩形地面上修筑同样宽的道路(图中阴影部分),余下的部分种上花草若种植花草的面积为540 m2,求道路的宽如果设道路的宽为x m,根据题意,所列方程正确的是()A(20 x)(32x)540B(20 x)(32x)100C(20 x)(32x)540D(20 x)(32x)540A6(2014兰州)如图,在一块长为22米,宽为17米的矩形地面上,要修建同样宽的两条互相垂直的道路(两条道路与矩形的一条边平行),剩余部分种上草坪,使草坪面积为300平方米,若设道路宽为x米,则根据题意可列出方程_
4、7如图,某矩形相框长26 cm,宽20 cm,其四周相框边(图中阴影部分)的宽度相同,都是x cm,若相框内部的面积为280 cm2,求相框边的宽度解:由题意得(262x)(202x)280,整理得x223x600,解得x13,x220(不合题意,舍去),则相框边的宽度为3 cm第6题图 第7题图(22x)(17x)3001 A B(3,1)或(1,3)11如图,已知点A是一次函数yx4图象上的一点,且矩形ABOC的面积等于3,则点A的坐标为_12如图是一个矩形花园,花园的长为100米,宽为50米,在它的四角各建一个同样大小的正方形观光休息亭,四周建有与观光休息亭等宽的观光大道,其余部分(图中
5、阴影部分)种植的是不同花草已知种植花草部分的面积为3600平方米,那么花园各角处的正方形观光休息亭的边长为多少米?解:设正方形观光休息亭的边长为x米,依题意得(1002x)(502x)3600,整理得x275x3500,解得x15,x270,x27050,不合题意,舍去,x5,即矩形花园各角处的正方形观光休息亭的边长为5米 13小林准备进行如下操作实验:把一根长为40 cm的铁丝剪成两段,并把每一段各围成一个正方形(1)要使这两个正方形的面积之和等于58 cm2,小林该怎么剪?(2)小峰对小林说:“这两个正方形的面积之和不可能等于48 cm2.”他的说法对吗?请说明理由解:(1)设其中一个正方
6、形的边长为x cm,则另一个正方形的边长为(10 x)cm,由题意得x2(10 x)258,解得x13,x27,4312,4728,所以小林应把绳子剪成12 cm和28 cm的两段(2)假设能围成由(1)得,x2(10 x)248,化简得x210 x260,因为b24ac(10)2412640,所以此方程没有实数根,所以小峰的说法是对的 14如图,在ABC中,B90,AB5 cm,BC7 cm,点P从点A开始沿AB边向点B以1 cm/s的速度移动,点Q从点B开始沿BC边向点C以2 cm/s的速度移动(1)如果点P,Q分别从点A,B同时出发,那么几秒后,PBQ的面积等于4 cm2?(2)如果点P
7、,Q分别从点A,B同时出发,那么几秒后,PQ的长度等于5 cm?(3)在问题(1)中,PBQ的面积能否等于7 cm2?说明理由解:(1)设x秒后,PBQ的面积等于4 cm2,根据题意得x(5x)4,解得x11,x24.当x4时,2x87,不合题意,舍去,x1(2)设x秒后,PQ的长度等于5 cm,根据题意得(5x)2(2x)225,解得x10(舍去),x22,x2(3)设x秒后,PBQ的面积等于7 cm2,根据题意得x(5x)7,此方程无解,所以不能 轴对称轴对称引言引言对称现象无处不在,从自然景观到艺术作对称现象无处不在,从自然景观到艺术作品,从建筑物到交通标志,甚至日常生活用品,都可品,从
8、建筑物到交通标志,甚至日常生活用品,都可以找到对称的例子,对称给我们带来美的感受!以找到对称的例子,对称给我们带来美的感受!引出新知引出新知探索新知探索新知问题问题1如图,把一张纸对折,剪出一个图案(折如图,把一张纸对折,剪出一个图案(折痕处不要完全剪断),再打开这张对折的纸,就得到了痕处不要完全剪断),再打开这张对折的纸,就得到了美丽的窗花观察得到的窗花,你能发现它们有什么共美丽的窗花观察得到的窗花,你能发现它们有什么共同的特点吗?同的特点吗?追问追问你能举出一些轴对称图形的例子吗?你能举出一些轴对称图形的例子吗?探索新知探索新知如果一个平面图形沿一条直线折叠,直线两旁的部如果一个平面图形沿
展开阅读全文
链接地址:https://www.163wenku.com/p-6672534.html