书签 分享 收藏 举报 版权申诉 / 38
上传文档赚钱

类型人教初中数学九上-《公式法》课件-(高效课堂)获奖-人教数学2022-.ppt

  • 上传人(卖家):ziliao2023
  • 文档编号:6672475
  • 上传时间:2023-07-26
  • 格式:PPT
  • 页数:38
  • 大小:1.46MB
  • 【下载声明】
    1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
    2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
    3. 本页资料《人教初中数学九上-《公式法》课件-(高效课堂)获奖-人教数学2022-.ppt》由用户(ziliao2023)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
    4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
    5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
    配套讲稿:

    如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。

    特殊限制:

    部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。

    关 键  词:
    公式法 初中 数学 公式 课件 高效 课堂 获奖 2022 下载 _九年级上册_人教版(2024)_数学_初中
    资源描述:

    1、2704xx。解:解:移项,得移项,得 274xx配方配方由此可得由此可得222171242xx2122x122x 1122x,2122x 利用配方法解一元二次方程利用配方法解一元二次方程回顾旧知回顾旧知 化:化:把原方程化成把原方程化成 xpxq=0 的形式。的形式。移项:移项:把常数项移到方程的右边,如把常数项移到方程的右边,如x2px=q。配方:配方:方程两边都加上方程两边都加上一次项系数一半的平方一次项系数一半的平方。开方:开方:根据平方根的意义,方程两边开平方。根据平方根的意义,方程两边开平方。求解:求解:解一元一次方程。解一元一次方程。定解:定解:写出原方程的解。写出原方程的解。用

    2、配方法解一元二次方程的步骤用配方法解一元二次方程的步骤方程右边方程右边是非负数是非负数x2px()2 =q()22p2p(x+)2=q()22p2p 一元二次方程一元二次方程的一般形式是什么?的一般形式是什么?ax2bxc=0(a0)如果使用配方法解如果使用配方法解出一元二次方程一般形出一元二次方程一般形式的根,那么这个根是式的根,那么这个根是不是可以普遍适用呢?不是可以普遍适用呢?新课导入新课导入任何一元二次方程都可以写成一般形式任何一元二次方程都可以写成一般形式20 0axbxca().2.axbxc 2.bcxxaa 你能否也用配方法得出的解呢?你能否也用配方法得出的解呢?二次项系数化为

    3、二次项系数化为1,得,得配方配方222,22bbcbxxaaaa 即即2224.24bbacxaa移项,得移项,得因为因为a0,4a20,式子式子b24ac的值有以下三种情况:的值有以下三种情况:(2)当)当时,一元二次方程时,一元二次方程有实数根有实数根(1)当)当时,一元二次方程时,一元二次方程有实数根有实数根042 acb)(0 02acbxax221244,;22bbacbbacxxaa 042 acb)(0 02acbxax12;2bxxa(3)当)当时,一元二次方程时,一元二次方程没有实数根没有实数根042 acb)(0 02acbxax 一般地,式子一般地,式子b b2 2-4a

    4、c-4ac叫做方程叫做方程axax2 2+bx+c=0(a0)+bx+c=0(a0)根的判别式。通根的判别式。通常用希腊字母表示它,即常用希腊字母表示它,即=b=b2 2-4ac-4ac。由上可知当由上可知当0 0时,方程有两个不相等的实数根;当时,方程有两个不相等的实数根;当=0=0时,时,方程有两个相等的实数根;当方程有两个相等的实数根;当0 0时,方程无实数根。时,方程无实数根。归归 纳纳w 一般地一般地,对于一元二次方程对于一元二次方程 axax2 2+bx+c=0(a0)+bx+c=0(a0).04.2422acbaacbbxw上面这个式子称为一元二次方程的求根公式上面这个式子称为一

    5、元二次方程的求根公式.w用求根公式解一元二次方程的方法称为用求根公式解一元二次方程的方法称为公式法公式法0,:时 它的根是当当 时,方程有时,方程有实数根吗实数根吗042acbw 例例2 2:用:用公式法公式法解方程解方程 (1 1)x x2 2-4x-7=0-4x-7=07,4,1cba解w1.1.变形变形:化已知方化已知方程为一般形式程为一般形式;w3.3.计算计算:=b b2 2-4ac4ac的值的值;w4.4.代入代入:把有关数把有关数值代入公式计算值代入公式计算;w5.5.定根定根:写出原方写出原方程的根程的根.w2.2.确定系数确定系数:用用a,b,ca,b,c写出各项系写出各项系

    6、数数;.044)7(144422acb112;11221xx学习是件很愉快的事学习是件很愉快的事042acb 112.2112412444242aacbbx数根:方程有两个不相等的实解:解:22(2)22210 xx例1,22,2cba0124)22(422acb则:方程有两个相等的实数根:则:方程有两个相等的实数根:222222221abxx这里的这里的a a、b b、c c的值分别的值分别是什么?是什么?042acb这里的这里的a a、b b、c c的值分别是的值分别是什么?什么?135322xxx)(例25410 xx解:原 方 程 可 化 为:1,4,5cba036)1(54)4(42

    7、2acb则:方程有两个则:方程有两个不相等不相等的实数根的实数根10645236)4(242aacbbx511064,1106421xx即:042acb 这里的这里的a a、b b、c c的值的值分别是什分别是什么?么?xx817422)(例28170 xx解:原方程可化为17,8,1cba041714)8(422acb方程无实数根。方程无实数根。042acb 用公式法解一元二次方程的一般步骤用公式法解一元二次方程的一般步骤1.将方程化成一般形式,并写出将方程化成一般形式,并写出a,b,c 的值。的值。2.求出求出 的值。的值。3.(a)当当 0 时,时,代入求根公式代入求根公式:写出一元二次

    8、方程的根:写出一元二次方程的根:x1=_ ,x2=_。(b)(b)当当=0=0时,代入求根公式:时,代入求根公式:写出一元二次方程的根:写出一元二次方程的根:x x1 1=x x2 2=_=_。(b)(b)当当 00时,方程实数根。时,方程实数根。242bbacxa 122bxxa 求本章引言中的问题,雕像下部高度求本章引言中的问题,雕像下部高度x(m)满足方程满足方程0422 xx,51220212414222x解这个方程,得解这个方程,得不能为负数,舍去)xxx(51,5121精确到,精确到,x1,虽然方程有两个根,但是其中只有虽然方程有两个根,但是其中只有x1符合问题的实际意义,符合问题

    9、的实际意义,所以雕像下部高度应设计为约所以雕像下部高度应设计为约(1)解下列方程:)解下列方程:22222116 0;230;43362 0;4460;548 4116245 8.xxxxxxxxxxxx xx ;解:解:(1)1,1,6.abc 22414 1625.bac 1251 5,2 12x 12,3.xx练练 习习 041322xx解:解:11,3,.4abc 2214344.4bac 3432,2 12x122332,.22xx 026332 xx解:解:3,6,2.abc 22464 3260.bac 66062 15315,663x12315315,.33xx 06442 x

    10、x解:解:4,6,0.abc 22464 4 0 36.bac 63666,2 48x 1230,.2xx 1148452xxx解:解:化为一般式化为一般式1,0,3.abc 22404 1312.bac 0122 3,2 12x123.xx 23 0 x .xxx854262,4,5.abc 22444 2556.bac 42 1442 14,2 24x 12214214,.22xx 解:解:化为一般式化为一般式22450 xx.轴对称轴对称引言引言对称现象无处不在,从自然景观到艺术作对称现象无处不在,从自然景观到艺术作品,从建筑物到交通标志,甚至日常生活用品,都可品,从建筑物到交通标志,甚

    11、至日常生活用品,都可以找到对称的例子,对称给我们带来美的感受!以找到对称的例子,对称给我们带来美的感受!引出新知引出新知探索新知探索新知问题问题1如图,把一张纸对折,剪出一个图案(折如图,把一张纸对折,剪出一个图案(折痕处不要完全剪断),再打开这张对折的纸,就得到了痕处不要完全剪断),再打开这张对折的纸,就得到了美丽的窗花观察得到的窗花,你能发现它们有什么共美丽的窗花观察得到的窗花,你能发现它们有什么共同的特点吗?同的特点吗?追问追问你能举出一些轴对称图形的例子吗?你能举出一些轴对称图形的例子吗?探索新知探索新知如果一个平面图形沿一条直线折叠,直线两旁的部如果一个平面图形沿一条直线折叠,直线两

    12、旁的部分能够互相重合,这个图形就叫做轴对称图形,这条直分能够互相重合,这个图形就叫做轴对称图形,这条直 线就是它的对称轴这时,我们也说这个图形关于这条线就是它的对称轴这时,我们也说这个图形关于这条 直线(成轴)对称直线(成轴)对称共同特征:共同特征:每一对图形沿着虚线折叠,左边的图形都能与右边每一对图形沿着虚线折叠,左边的图形都能与右边的图形重合的图形重合 探索新知探索新知问题问题2观察下面每对图形(如图),你能类比前观察下面每对图形(如图),你能类比前面的内容概括出它们的共同特征吗?面的内容概括出它们的共同特征吗?追问追问1你能再举出一些两个图形成轴对称的例子吗?你能再举出一些两个图形成轴对

    13、称的例子吗?探索新知探索新知把一个图形沿着某一条直线折叠,如果它能够与另把一个图形沿着某一条直线折叠,如果它能够与另一个图形重合,那么就说这两个图形关于这条直线(成一个图形重合,那么就说这两个图形关于这条直线(成轴)对称,这条直线叫做对称轴,折叠后重合的点是对轴)对称,这条直线叫做对称轴,折叠后重合的点是对应点,叫做对称点应点,叫做对称点 两者的区别:两者的区别:轴对称图形指的是一个图形沿对称轴折叠后这个图轴对称图形指的是一个图形沿对称轴折叠后这个图形的两部分能完全重合,而两个图形成轴对称指的是两形的两部分能完全重合,而两个图形成轴对称指的是两个图形之间的位置关系,这两个图形沿对称轴折叠后能个

    14、图形之间的位置关系,这两个图形沿对称轴折叠后能够重合够重合探索新知探索新知追问追问2你能结合具体的图形说明轴对称图形和两个你能结合具体的图形说明轴对称图形和两个 图形成轴对称有什么区别与联系吗图形成轴对称有什么区别与联系吗?两者的联系:两者的联系:把成轴对称的两个图形看成一个整体,它就是一个把成轴对称的两个图形看成一个整体,它就是一个轴对称图形把一个轴对称图形沿对称轴分成两个图轴对称图形把一个轴对称图形沿对称轴分成两个图形,这两个图形关于这条轴对称形,这两个图形关于这条轴对称 探索新知探索新知追问追问2你能结合具体的图形说明轴对称图形和两个你能结合具体的图形说明轴对称图形和两个 图形成轴对称有

    15、什么区别与联系吗图形成轴对称有什么区别与联系吗?追问追问1你能说明其中你能说明其中的道理吗?的道理吗?探索新知探索新知问题问题3如图,如图,ABC 和和ABC关于直线关于直线MN 对称,点对称,点A,B,C分别是点分别是点A,B,C 的对称点,线的对称点,线 段段AA,BB,CC与直线与直线MN 有什么关系?有什么关系?ABCMNPABC探索新知探索新知追问追问2上面的问题说明上面的问题说明“如果如果ABC 和和ABC关于直线关于直线MN 对称,那么,直线对称,那么,直线MN 垂直垂直线段线段AA,BB和和CC,并且直线,并且直线MN 还平分线段还平分线段AA,BB和和CC”如如果将其中的果将

    16、其中的“三角形三角形”改为改为“四边形四边形”“”“五边形五边形”其其他条件不变,上述结论还成他条件不变,上述结论还成立吗?立吗?ABCMNPABC经过线段中点并且垂直经过线段中点并且垂直于这条线段的直线,叫做这于这条线段的直线,叫做这条线段的垂直平分线条线段的垂直平分线 探索新知探索新知问题问题3如图,如图,ABC 和和ABC关于直线关于直线MN 对称,点对称,点A,B,C分别是点分别是点A,B,C 的对称点,线的对称点,线段段AA,BB,CC与直线与直线MN 有什么关系?有什么关系?ABCMNPABC探索新知探索新知追问追问3你能用数学语言概括前面的结论吗?你能用数学语言概括前面的结论吗?

    17、成轴对称的两个图形的性质:成轴对称的两个图形的性质:如果两个图形关于某条如果两个图形关于某条直线对称,那么对称轴是任直线对称,那么对称轴是任何一对对应点所连线段的垂何一对对应点所连线段的垂直平分线即对称点所连线直平分线即对称点所连线段被对称轴垂直平分;对称段被对称轴垂直平分;对称轴垂直平分对称点所连线段轴垂直平分对称点所连线段 ABCMNPABC结论:结论:直线直线l 垂直线段垂直线段AA,BB,直线直线l平分线段平分线段AA,BB(或直(或直线线l 是线段是线段AA,BB的垂直平分的垂直平分线)线)探索新知探索新知问题问题4下图是一个轴对称图形,你能发现什么结下图是一个轴对称图形,你能发现什

    18、么结 论?能说明理由吗?论?能说明理由吗?ABlAB追问你能用数学语言概括前面追问你能用数学语言概括前面的结论吗?的结论吗?探索新知探索新知问题问题4下图是一个轴对称图形,你能发现什么结下图是一个轴对称图形,你能发现什么结论?能说明理由吗?论?能说明理由吗?ABlAB轴对称图形的性质:轴对称图形的性质:轴对称图形的对称轴,是任何轴对称图形的对称轴,是任何一对对应点所连线段的垂直平分线一对对应点所连线段的垂直平分线 探索新知探索新知问题问题4下图是一个轴对称图形,你能发现什么结下图是一个轴对称图形,你能发现什么结 论?能说明理由吗?论?能说明理由吗?ABlAB课堂练习课堂练习练习练习1 1如图所

    19、示的每个图形是轴对称图形吗?如如图所示的每个图形是轴对称图形吗?如果是,指出它的对称轴果是,指出它的对称轴 课堂练习课堂练习练习练习2如图所示的每幅图形中的两个图案是轴对称如图所示的每幅图形中的两个图案是轴对称的吗?如果是,试着找出它们的对称轴,并找出一对对的吗?如果是,试着找出它们的对称轴,并找出一对对称点称点 (1)本节课学习了哪些主要内容?)本节课学习了哪些主要内容?(2)轴对称图形和两个图形成轴对称的区别与联系是)轴对称图形和两个图形成轴对称的区别与联系是 什么?什么?(3)成轴对称的两个图形有什么性质?轴对称图形有)成轴对称的两个图形有什么性质?轴对称图形有 什么性质?我们是怎么探究这些性质的?什么性质?我们是怎么探究这些性质的?课堂小结课堂小结教科书习题教科书习题13.1第第1、2、3、4、5题题 布置作业布置作业

    展开阅读全文
    提示  163文库所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
    关于本文
    本文标题:人教初中数学九上-《公式法》课件-(高效课堂)获奖-人教数学2022-.ppt
    链接地址:https://www.163wenku.com/p-6672475.html

    Copyright@ 2017-2037 Www.163WenKu.Com  网站版权所有  |  资源地图   
    IPC备案号:蜀ICP备2021032737号  | 川公网安备 51099002000191号


    侵权投诉QQ:3464097650  资料上传QQ:3464097650
       


    【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。

    163文库