书签 分享 收藏 举报 版权申诉 / 44
上传文档赚钱

类型人教初中数学九上-《用函数观点看一元二次方程》课件-(高效课堂)获奖-人教数学2022-.ppt

  • 上传人(卖家):ziliao2023
  • 文档编号:6672308
  • 上传时间:2023-07-26
  • 格式:PPT
  • 页数:44
  • 大小:1.43MB
  • 【下载声明】
    1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
    2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
    3. 本页资料《人教初中数学九上-《用函数观点看一元二次方程》课件-(高效课堂)获奖-人教数学2022-.ppt》由用户(ziliao2023)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
    4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
    5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
    配套讲稿:

    如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。

    特殊限制:

    部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。

    关 键  词:
    用函数观点看一元二次方程 初中 数学 函数 观点 一元 二次方程 课件 高效 课堂 获奖 2022 下载 _九年级上册_人教版(2024)_数学_初中
    资源描述:

    1、第第2222章章 第二节第二节 用函数观点看一元二次方程用函数观点看一元二次方程复习复习.1、一元二次方程、一元二次方程ax2+bx+c=0的根的情的根的情况可由况可由 确定。确定。0 0=0=0 0 0有两个不相等的实数根有两个不相等的实数根有两个相等的实数根有两个相等的实数根没有实数根没有实数根b2-4ac活动活动1 1问题问题1:1:如图如图,以以 40 40 m/sm/s的速度将小球沿与地面成的速度将小球沿与地面成 3030度度角的方向击出时角的方向击出时,球的飞行路线是一条抛物线球的飞行路线是一条抛物线,如果不考虑如果不考虑空气阻力空气阻力,球的飞行高度球的飞行高度 h(h(单位单位

    2、:m):m)与飞行时间与飞行时间 t(t(单单位位:s):s)之间具有关系之间具有关系:h=20 t h=20 t 5 t 5 t2 2 考虑下列问题考虑下列问题:(1)(1)球的飞行高度能否达到球的飞行高度能否达到 15 m?15 m?若能若能,需要多少时间需要多少时间?(2)(2)球的飞行高度能否达到球的飞行高度能否达到 20 m?20 m?若能若能,需要多少时间需要多少时间?(3)(3)球的飞行高度能否达到球的飞行高度能否达到 20.5 m?20.5 m?若能若能,需要多少时间需要多少时间?(4)(4)球从球从 飞出到落地飞出到落地 要用多少时间要用多少时间?活动活动2 215=20 t

    3、 5 t2h=0h t20=20 t 5 t220.5=20 t 5 t20=20 t 5 t2解解:(:(1)解方程)解方程15=20t-5t2 即:即:t2-4t+3=0 t1=1,t2=3 当球飞行当球飞行1s和和3s时,它的高度为时,它的高度为15m。(2)解方程)解方程20=20t-5t2 即:即:t2-4t+4=0 t1=t2=2 当球飞行当球飞行2s时,它的高度为时,它的高度为20m。(3)解方程)解方程20.5=20t-5t2 即:即:t2-4t+4.1=0 因为因为(-4)20,所以方程无解,所以方程无解,球的飞行高度达不到。球的飞行高度达不到。(4)解方程)解方程0=20t

    4、-5t2 即:即:t2-4t=0 t1=0,t2=4 球的飞行球的飞行0s和和4s时,它的高度为时,它的高度为0m。即。即 飞出到落地用了飞出到落地用了4s 。你能结合图你能结合图形指出为什形指出为什么在两个时么在两个时间球的高度间球的高度为为15m吗?吗?那么为什么那么为什么只在一个时只在一个时间求得高度间求得高度为为20m呢?呢?那么为什么那么为什么两个时间球两个时间球的高度为零的高度为零呢?呢?从上面你能看出,对于二次函数从上面你能看出,对于二次函数h=20 t 5 t2中,如何求时间中,如何求时间t的值吗?的值吗?2205htt从上面发现,二次函数从上面发现,二次函数y=axy=ax2

    5、 2+bx+c+bx+c何时为何时为一元二次方程一元二次方程?一般地,当一般地,当y取定值时,二次函数为一元取定值时,二次函数为一元二次方程。二次方程。如:如:y=5时,则时,则5=ax2+bx+c就就是一个一元二次方程。是一个一元二次方程。为一个常数为一个常数(定值)(定值)1、二次函数、二次函数y=x2+x-2,y=x2-6x+9,y=x2 x+1的图象如图所示。的图象如图所示。问题问题2 2(1).每个图象与每个图象与x轴有几个交点?轴有几个交点?(2).一元二次方程一元二次方程?x2+x-2=0,x2-6x+9=0有几个根有几个根?验证一下一元二次方程验证一下一元二次方程x2 x+1=

    6、0有根吗有根吗?(3).二次函数二次函数y=ax2+bx+c的图象和的图象和x轴交点的坐标与轴交点的坐标与 一元二次方程一元二次方程ax2+bx+c=0的根有什么关系的根有什么关系?22yxx 269yxx21y xx 答:答:2个,个,1个,个,0个个.,2,2.2无实数根个相等的根个根边观察边思考边观察边思考22yxx 269yxx21y xx(3),二次函数二次函数y=ax2+bx+c的图象和的图象和x轴交点的坐轴交点的坐标与标与 一元二次方程一元二次方程ax2+bx+c=0的根有什么关的根有什么关系系?二次函数二次函数与与x轴交点坐标轴交点坐标相应方程的根相应方程的根22yxx 269

    7、yxx21y xx(-2,0),(1,0)x1=-2,x2=1(3,0)x1=x2=3无交点无交点无实根无实根 抛物线y=ax2+bx+c与与x轴交轴交点的横坐标点的横坐标是方程ax2+bx+c=0的根根。b2 4ac 0b2 4ac 0OXY2、二次函数、二次函数y=ax2+bx+c的图象和的图象和x轴有无轴有无交点由什么决定呢?交点由什么决定呢?b2 4ac的正的正负负b2 4ac=02 2、二次函数、二次函数y=axy=ax2 2+bx+c+bx+c的图象和的图象和x x轴交点轴交点 情况如何?(情况如何?(b b2 2-4ac-4ac如何)如何)二次函数与一元二次方程b2 4ac 0b

    8、2 4ac=0b2 4ac 0-4ac 0b b2 2-4ac=0-4ac=0b b2 2-4ac 0-4ac 0,0,c0b2-4ac0b2-4ac=0两个交点两个交点没有交点没有交点一个交点一个交点二次函数与二次函数与x轴的交点轴的交点当二次函数当二次函数y=ax2+bx+c中中y的值的值确定,求确定,求x的值时,二次函数就变的值时,二次函数就变为一元二次方程。为一元二次方程。即当即当y取定值时,取定值时,二次函数就为一元二次方程。二次函数就为一元二次方程。二次函数与一二次函数与一元二次方程的元二次方程的关系关系二次函数与二次函数与x轴的交点的横坐标是一元二次方程的解轴的交点的横坐标是一元

    9、二次方程的解 讨讨 论论这节课应有以下内容:这节课应有以下内容:1.已知函数已知函数 的图象如图所示,那么关的图象如图所示,那么关于于 的方程的方程 的根的情况是(的根的情况是()2y axbx c22 0ax bx c A无实数根无实数根 B有两个相等实根有两个相等实根C有两个异号实数根有两个异号实数根 D有两个同号不等实数根有两个同号不等实数根D2.抛物线抛物线 与轴只有一个公共点,与轴只有一个公共点,则则m的值为的值为 228yxx m83.如图,抛物线如图,抛物线 的对称轴是的对称轴是直线直线 且经过点(且经过点(3,0),则),则 的值的值为为()A.0 B.1 C.1 D.2)0(

    10、2acbxaxy1xcbaA4.二次函数二次函数 的图象如图所示,根据的图象如图所示,根据图象解答下列问题:图象解答下列问题:(1)写出方程)写出方程 的两个根的两个根(2)写出不等式)写出不等式 的解集的解集(3)写出)写出y随随x的增大而减小的自变量的取值范围的增大而减小的自变量的取值范围(4)若方程)若方程 有两个不相等的实数根,有两个不相等的实数根,求的取值范围求的取值范围2(0)yaxbxc a20axbxc20axbxc2axbxck32 轴对称轴对称引言引言对称现象无处不在,从自然景观到艺术作对称现象无处不在,从自然景观到艺术作品,从建筑物到交通标志,甚至日常生活用品,都可品,从

    11、建筑物到交通标志,甚至日常生活用品,都可以找到对称的例子,对称给我们带来美的感受!以找到对称的例子,对称给我们带来美的感受!引出新知引出新知探索新知探索新知问题问题1如图,把一张纸对折,剪出一个图案(折如图,把一张纸对折,剪出一个图案(折痕处不要完全剪断),再打开这张对折的纸,就得到了痕处不要完全剪断),再打开这张对折的纸,就得到了美丽的窗花观察得到的窗花,你能发现它们有什么共美丽的窗花观察得到的窗花,你能发现它们有什么共同的特点吗?同的特点吗?追问追问你能举出一些轴对称图形的例子吗?你能举出一些轴对称图形的例子吗?探索新知探索新知如果一个平面图形沿一条直线折叠,直线两旁的部如果一个平面图形沿

    12、一条直线折叠,直线两旁的部分能够互相重合,这个图形就叫做轴对称图形,这条直分能够互相重合,这个图形就叫做轴对称图形,这条直 线就是它的对称轴这时,我们也说这个图形关于这条线就是它的对称轴这时,我们也说这个图形关于这条 直线(成轴)对称直线(成轴)对称共同特征:共同特征:每一对图形沿着虚线折叠,左边的图形都能与右边每一对图形沿着虚线折叠,左边的图形都能与右边的图形重合的图形重合 探索新知探索新知问题问题2观察下面每对图形(如图),你能类比前观察下面每对图形(如图),你能类比前面的内容概括出它们的共同特征吗?面的内容概括出它们的共同特征吗?追问追问1你能再举出一些两个图形成轴对称的例子吗?你能再举

    13、出一些两个图形成轴对称的例子吗?探索新知探索新知把一个图形沿着某一条直线折叠,如果它能够与另把一个图形沿着某一条直线折叠,如果它能够与另一个图形重合,那么就说这两个图形关于这条直线(成一个图形重合,那么就说这两个图形关于这条直线(成轴)对称,这条直线叫做对称轴,折叠后重合的点是对轴)对称,这条直线叫做对称轴,折叠后重合的点是对应点,叫做对称点应点,叫做对称点 两者的区别:两者的区别:轴对称图形指的是一个图形沿对称轴折叠后这个图轴对称图形指的是一个图形沿对称轴折叠后这个图形的两部分能完全重合,而两个图形成轴对称指的是两形的两部分能完全重合,而两个图形成轴对称指的是两个图形之间的位置关系,这两个图

    14、形沿对称轴折叠后能个图形之间的位置关系,这两个图形沿对称轴折叠后能够重合够重合探索新知探索新知追问追问2你能结合具体的图形说明轴对称图形和两个你能结合具体的图形说明轴对称图形和两个 图形成轴对称有什么区别与联系吗图形成轴对称有什么区别与联系吗?两者的联系:两者的联系:把成轴对称的两个图形看成一个整体,它就是一个把成轴对称的两个图形看成一个整体,它就是一个轴对称图形把一个轴对称图形沿对称轴分成两个图轴对称图形把一个轴对称图形沿对称轴分成两个图形,这两个图形关于这条轴对称形,这两个图形关于这条轴对称 探索新知探索新知追问追问2你能结合具体的图形说明轴对称图形和两个你能结合具体的图形说明轴对称图形和

    15、两个 图形成轴对称有什么区别与联系吗图形成轴对称有什么区别与联系吗?追问追问1你能说明其中你能说明其中的道理吗?的道理吗?探索新知探索新知问题问题3如图,如图,ABC 和和ABC关于直线关于直线MN 对称,点对称,点A,B,C分别是点分别是点A,B,C 的对称点,线的对称点,线 段段AA,BB,CC与直线与直线MN 有什么关系?有什么关系?ABCMNPABC探索新知探索新知追问追问2上面的问题说明上面的问题说明“如果如果ABC 和和ABC关于直线关于直线MN 对称,那么,直线对称,那么,直线MN 垂直垂直线段线段AA,BB和和CC,并且直线,并且直线MN 还平分线段还平分线段AA,BB和和CC

    16、”如如果将其中的果将其中的“三角形三角形”改为改为“四边形四边形”“”“五边形五边形”其其他条件不变,上述结论还成他条件不变,上述结论还成立吗?立吗?ABCMNPABC经过线段中点并且垂直经过线段中点并且垂直于这条线段的直线,叫做这于这条线段的直线,叫做这条线段的垂直平分线条线段的垂直平分线 探索新知探索新知问题问题3如图,如图,ABC 和和ABC关于直线关于直线MN 对称,点对称,点A,B,C分别是点分别是点A,B,C 的对称点,线的对称点,线段段AA,BB,CC与直线与直线MN 有什么关系?有什么关系?ABCMNPABC探索新知探索新知追问追问3你能用数学语言概括前面的结论吗?你能用数学语

    17、言概括前面的结论吗?成轴对称的两个图形的性质:成轴对称的两个图形的性质:如果两个图形关于某条如果两个图形关于某条直线对称,那么对称轴是任直线对称,那么对称轴是任何一对对应点所连线段的垂何一对对应点所连线段的垂直平分线即对称点所连线直平分线即对称点所连线段被对称轴垂直平分;对称段被对称轴垂直平分;对称轴垂直平分对称点所连线段轴垂直平分对称点所连线段 ABCMNPABC结论:结论:直线直线l 垂直线段垂直线段AA,BB,直线直线l平分线段平分线段AA,BB(或直(或直线线l 是线段是线段AA,BB的垂直平分的垂直平分线)线)探索新知探索新知问题问题4下图是一个轴对称图形,你能发现什么结下图是一个轴

    18、对称图形,你能发现什么结 论?能说明理由吗?论?能说明理由吗?ABlAB追问你能用数学语言概括前面追问你能用数学语言概括前面的结论吗?的结论吗?探索新知探索新知问题问题4下图是一个轴对称图形,你能发现什么结下图是一个轴对称图形,你能发现什么结论?能说明理由吗?论?能说明理由吗?ABlAB轴对称图形的性质:轴对称图形的性质:轴对称图形的对称轴,是任何轴对称图形的对称轴,是任何一对对应点所连线段的垂直平分线一对对应点所连线段的垂直平分线 探索新知探索新知问题问题4下图是一个轴对称图形,你能发现什么结下图是一个轴对称图形,你能发现什么结 论?能说明理由吗?论?能说明理由吗?ABlAB课堂练习课堂练习

    19、练习练习1 1如图所示的每个图形是轴对称图形吗?如如图所示的每个图形是轴对称图形吗?如果是,指出它的对称轴果是,指出它的对称轴 课堂练习课堂练习练习练习2如图所示的每幅图形中的两个图案是轴对称如图所示的每幅图形中的两个图案是轴对称的吗?如果是,试着找出它们的对称轴,并找出一对对的吗?如果是,试着找出它们的对称轴,并找出一对对称点称点 (1)本节课学习了哪些主要内容?)本节课学习了哪些主要内容?(2)轴对称图形和两个图形成轴对称的区别与联系是)轴对称图形和两个图形成轴对称的区别与联系是 什么?什么?(3)成轴对称的两个图形有什么性质?轴对称图形有)成轴对称的两个图形有什么性质?轴对称图形有 什么性质?我们是怎么探究这些性质的?什么性质?我们是怎么探究这些性质的?课堂小结课堂小结教科书习题教科书习题13.1第第1、2、3、4、5题题 布置作业布置作业

    展开阅读全文
    提示  163文库所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
    关于本文
    本文标题:人教初中数学九上-《用函数观点看一元二次方程》课件-(高效课堂)获奖-人教数学2022-.ppt
    链接地址:https://www.163wenku.com/p-6672308.html
    ziliao2023
         内容提供者      个人认证 实名认证

    Copyright@ 2017-2037 Www.163WenKu.Com  网站版权所有  |  资源地图   
    IPC备案号:蜀ICP备2021032737号  | 川公网安备 51099002000191号


    侵权投诉QQ:3464097650  资料上传QQ:3464097650
       


    【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。

    163文库