书签 分享 收藏 举报 版权申诉 / 48
上传文档赚钱

类型人教初中数学九上-《圆周角》课件-(高效课堂)获奖-人教数学2022-.ppt

  • 上传人(卖家):ziliao2023
  • 文档编号:6672286
  • 上传时间:2023-07-26
  • 格式:PPT
  • 页数:48
  • 大小:1.38MB
  • 【下载声明】
    1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
    2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
    3. 本页资料《人教初中数学九上-《圆周角》课件-(高效课堂)获奖-人教数学2022-.ppt》由用户(ziliao2023)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
    4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
    5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
    配套讲稿:

    如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。

    特殊限制:

    部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。

    关 键  词:
    圆周角 初中 数学 课件 高效 课堂 获奖 2022 下载 _九年级上册_人教版(2024)_数学_初中
    资源描述:

    1、圆周角教学目标:1.理解圆周角的定义。理解圆周角的定义。2.掌握有关圆周角的定理及其推论。掌握有关圆周角的定理及其推论。3.应用圆周角的定理及其推论解决相关问题。应用圆周角的定理及其推论解决相关问题。复习旧知:请说说我们是如何给复习旧知:请说说我们是如何给圆心角下定义的,试回答?圆心角下定义的,试回答?顶点在圆心的角叫圆心角。顶点在圆心的角叫圆心角。能仿照圆心角的定义,能仿照圆心角的定义,给下图中象给下图中象ACB ACB 这样的角下个定义吗?这样的角下个定义吗?顶点顶点在在圆圆上,并且上,并且两边两边都和都和圆相交圆相交的角叫做的角叫做圆周角圆周角 问题探讨:问题探讨:判断下列图形中所画的判

    2、断下列图形中所画的P P是否为圆周角?并说明理由。是否为圆周角?并说明理由。PPPP不是不是是是不是不是不是不是顶点不顶点不在圆上。在圆上。顶点在圆上,顶点在圆上,两边和圆相两边和圆相交。交。两边不和两边不和圆相交。圆相交。有一边和圆有一边和圆不相交。不相交。ABCO有没有圆周角?有没有圆周角?有没有圆心角?有没有圆心角?它们有什么共同的特点?它们有什么共同的特点?它们都对着它们都对着同一条弧同一条弧练习一练习一:判断下列各图中,哪些是圆周角,为什么?:判断下列各图中,哪些是圆周角,为什么?相同点:它们的两条边都与圆相交,都对着一条弧。相同点:它们的两条边都与圆相交,都对着一条弧。不同点:圆周

    3、角的顶点在圆上,圆心角的顶点在不同点:圆周角的顶点在圆上,圆心角的顶点在圆心。圆心。你能正确区分圆周角和圆心角吗?你能正确区分圆周角和圆心角吗?画画一个圆一个圆,再任意画一个圆周角再任意画一个圆周角,看一下圆心在什么看一下圆心在什么位置位置?圆心在一边上圆心在一边上圆心在角内圆心在角内圆心在角外圆心在角外 如图如图,观察圆周角观察圆周角ABCABC与圆心角与圆心角AOC,AOC,它们的大它们的大小有什么关系小有什么关系?(量一量)(量一量)OABCOABCOABC圆周角圆周角和和圆心角圆心角的关系的关系 1 1.首先考虑第一种情况:首先考虑第一种情况:当当圆心圆心O O在在圆周角圆周角(ABC

    4、)(ABC)的一边的一边(BC)(BC)上时上时,圆周角圆周角ABCABC与圆心角与圆心角AOCAOC的大小关系的大小关系.nAOCAOC是是ABOABO的外角,的外角,nAOC=B+A.AOC=B+A.nOA=OBOA=OB,OABCnA=B.A=B.AOC=2B.AOC=2B.即即 ABC=AOC.ABC=AOC.21你能写出这个命题吗你能写出这个命题吗?同弧所对的同弧所对的圆周角圆周角等于它所对等于它所对的的圆心角的一半圆心角的一半.期望期望:你你可要理解可要理解并掌握这并掌握这个模型个模型.第二种情况:第二种情况:如果圆心不在圆周角的如果圆心不在圆周角的一边上一边上,结果会怎样结果会怎

    5、样?2.2.当当圆心圆心O O在圆周角在圆周角(ABC)(ABC)的内部时的内部时,圆周角圆周角ABCABC与圆心角与圆心角AOCAOC的大小关的大小关系会怎样系会怎样?n提示提示:能否转化为能否转化为1 1的情况的情况?n过点过点B B作直径作直径BD.BD.由由1 1可得可得:O ABC=AOC.ABC=AOC.21能写出这个命题吗能写出这个命题吗?同弧所对的同弧所对的圆周角圆周角等于它所对等于它所对的的圆心角圆心角的一半的一半.ABCDnABD=AOD,CBD=COD,ABD=AOD,CBD=COD,2121OABC 第三种情况:第三种情况:如果圆心不在圆周角如果圆心不在圆周角的一边上的

    6、一边上,结果会怎样结果会怎样?3.3.当当圆心圆心O O在圆周角在圆周角(ABC)(ABC)的外部的外部时时,圆周角圆周角ABCABC与圆心角与圆心角AOCAOC的大的大小关系会怎样小关系会怎样?n提示提示:能否也转化为能否也转化为1 1的情况的情况?n过点过点B B作直径作直径BD.BD.由由1 1可得可得:O ABC=AOC.ABC=AOC.21你能写出这个命题吗你能写出这个命题吗?同弧所对的同弧所对的圆周角圆周角等于它所对等于它所对的的圆心角圆心角的一半的一半.DnABD=AOD,CBD=COD,ABD=AOD,CBD=COD,2121ABCOABC结论:1.1.一条弧所对的一条弧所对的

    7、圆周角圆周角等于它所对的等于它所对的圆心角圆心角的一半的一半ABOEFG2.2.一条弧所对的一条弧所对的圆周角相等圆周角相等 o3.3.直径所对的圆周角等于直径所对的圆周角等于90度度ABC1OC2C3一、定理一、定理 在同圆或等圆中,同弧或等弧所对的圆在同圆或等圆中,同弧或等弧所对的圆 周角相等,都等于这条弧所对的圆心角周角相等,都等于这条弧所对的圆心角 的一半的一半定定 理理 半圆(或直径)所对的圆周角半圆(或直径)所对的圆周角是直角,是直角,9090的圆周角所对的弦的圆周角所对的弦是直径是直径推推 论论ABCDEO在同圆或等圆中,如果两个圆周角相等,它在同圆或等圆中,如果两个圆周角相等,

    8、它们所对弧一定相等吗?为什么?们所对弧一定相等吗?为什么?在同圆或等圆中,如果两个圆周角相等,在同圆或等圆中,如果两个圆周角相等,它们所对弧一定相等它们所对弧一定相等 因为,在同圆或等圆中,因为,在同圆或等圆中,如果圆周角相等,那么它所如果圆周角相等,那么它所对的圆心角也相等,因此它对的圆心角也相等,因此它所对的弧也相等所对的弧也相等CBOAFGE(ABCD在同圆或等圆中在同圆或等圆中相等的圆周角所对的弧相等相等的圆周角所对的弧相等.则则 D=AABCD如图如图,若若 AC=BD 1.如图,点如图,点A、B、C、D在同一个圆上,四边形在同一个圆上,四边形ABCD的对角线把的对角线把4个内角分成

    9、个内角分成8个角,这些角中哪个角,这些角中哪些是相等的角?些是相等的角?ABCD123456781=45=82=73=6练习二、练习二、方法点拔:方法点拔:由同弧来找相等的圆周角弧来找相等的圆周角 2 2、求圆中角、求圆中角X X的度数的度数BAO.70 xAO.X120600BP练习二:练习二:3.如图,圆心角如图,圆心角AOB=100,则则ACB=_。OABC例例2 如图,如图,O直径直径AB为为10cm,弦,弦AC为为6cm,ACB的平的平分线交分线交 O于于D,求,求BC、AD、BD的长的长86102222ACABBC又在又在RtABD中,中,AD2+BD2=AB2,22105 2(c

    10、m)22ADBDABABCDO解:解:AB是直径,是直径,ACB=ADB=90在在RtABC中,中,CD平分平分ACB,AD=BD.ADBD例题例题106)8例例3.求证:如果三角形一边上的中线等于这边的一半,那么这求证:如果三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形(提示:作出以这条边为直径的圆个三角形是直角三角形(提示:作出以这条边为直径的圆.)ABCO求证:求证:ABC 为直角三角形为直角三角形.证明:证明:CO=AB,12以以AB为直径作为直径作 O,AO=BO,AO=BO=CO.点点C在在 O上上.又又AB为直径为直径,ACB=180=90.12已知:已知:ABC

    11、中,中,CO为为AB边上的中线,边上的中线,12且且CO=AB ABC 为直角三角形为直角三角形.例例4 4,ABAB、ACAC为为O O的两条弦,延长的两条弦,延长CACA到到D D,使,使 AD=ABAD=AB,如果,如果ADB=35ADB=35,求求BOCBOC的度数。的度数。BOC=140BOC=140 350700ABECOD例例5 5,如图所示,已知,如图所示,已知ABCABC的三个顶点都在的三个顶点都在OO上,上,ADAD是是ABCABC的高,的高,AEAE是是OO的直径的直径.求证:求证:BAEBAECADCAD1、在、在O中,中,CBD=30,BDC=20,求求A1、在、在O

    12、中,中,CBD=30,BDC=20,求求A 2、如图,在、如图,在O中,中,AB为直径,为直径,CB=CF,弦弦CGAB,交,交AB于于D,交,交BF于于E 求证:求证:BE=EC4 4、在、在O O中,一条弧所对的圆心角和圆周角分别为中,一条弧所对的圆心角和圆周角分别为(2x+100)(2x+100)和和(5x-30)(5x-30),则,则x=x=_ _ _;3.3.如图,在直径为如图,在直径为ABAB的半圆中,的半圆中,O O为圆心,为圆心,C C、D D 为半圆上的两点,为半圆上的两点,COD=50COD=50,则,则 CAD=_CAD=_;20202525拓展练习拓展练习如图,点P是

    13、O外一点,点A、B、Q是 O上的点。(1)求证P AQB(2)如果点P在 O内,P与AQB有怎样的关系?为什么?OBpQA谢谢!轴对称轴对称引言引言对称现象无处不在,从自然景观到艺术作对称现象无处不在,从自然景观到艺术作品,从建筑物到交通标志,甚至日常生活用品,都可品,从建筑物到交通标志,甚至日常生活用品,都可以找到对称的例子,对称给我们带来美的感受!以找到对称的例子,对称给我们带来美的感受!引出新知引出新知探索新知探索新知问题问题1如图,把一张纸对折,剪出一个图案(折如图,把一张纸对折,剪出一个图案(折痕处不要完全剪断),再打开这张对折的纸,就得到了痕处不要完全剪断),再打开这张对折的纸,就

    14、得到了美丽的窗花观察得到的窗花,你能发现它们有什么共美丽的窗花观察得到的窗花,你能发现它们有什么共同的特点吗?同的特点吗?追问追问你能举出一些轴对称图形的例子吗?你能举出一些轴对称图形的例子吗?探索新知探索新知如果一个平面图形沿一条直线折叠,直线两旁的部如果一个平面图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形就叫做轴对称图形,这条直分能够互相重合,这个图形就叫做轴对称图形,这条直 线就是它的对称轴这时,我们也说这个图形关于这条线就是它的对称轴这时,我们也说这个图形关于这条 直线(成轴)对称直线(成轴)对称共同特征:共同特征:每一对图形沿着虚线折叠,左边的图形都能与右边每一对图形沿着

    15、虚线折叠,左边的图形都能与右边的图形重合的图形重合 探索新知探索新知问题问题2观察下面每对图形(如图),你能类比前观察下面每对图形(如图),你能类比前面的内容概括出它们的共同特征吗?面的内容概括出它们的共同特征吗?追问追问1你能再举出一些两个图形成轴对称的例子吗?你能再举出一些两个图形成轴对称的例子吗?探索新知探索新知把一个图形沿着某一条直线折叠,如果它能够与另把一个图形沿着某一条直线折叠,如果它能够与另一个图形重合,那么就说这两个图形关于这条直线(成一个图形重合,那么就说这两个图形关于这条直线(成轴)对称,这条直线叫做对称轴,折叠后重合的点是对轴)对称,这条直线叫做对称轴,折叠后重合的点是对

    16、应点,叫做对称点应点,叫做对称点 两者的区别:两者的区别:轴对称图形指的是一个图形沿对称轴折叠后这个图轴对称图形指的是一个图形沿对称轴折叠后这个图形的两部分能完全重合,而两个图形成轴对称指的是两形的两部分能完全重合,而两个图形成轴对称指的是两个图形之间的位置关系,这两个图形沿对称轴折叠后能个图形之间的位置关系,这两个图形沿对称轴折叠后能够重合够重合探索新知探索新知追问追问2你能结合具体的图形说明轴对称图形和两个你能结合具体的图形说明轴对称图形和两个 图形成轴对称有什么区别与联系吗图形成轴对称有什么区别与联系吗?两者的联系:两者的联系:把成轴对称的两个图形看成一个整体,它就是一个把成轴对称的两个

    17、图形看成一个整体,它就是一个轴对称图形把一个轴对称图形沿对称轴分成两个图轴对称图形把一个轴对称图形沿对称轴分成两个图形,这两个图形关于这条轴对称形,这两个图形关于这条轴对称 探索新知探索新知追问追问2你能结合具体的图形说明轴对称图形和两个你能结合具体的图形说明轴对称图形和两个 图形成轴对称有什么区别与联系吗图形成轴对称有什么区别与联系吗?追问追问1你能说明其中你能说明其中的道理吗?的道理吗?探索新知探索新知问题问题3如图,如图,ABC 和和ABC关于直线关于直线MN 对称,点对称,点A,B,C分别是点分别是点A,B,C 的对称点,线的对称点,线 段段AA,BB,CC与直线与直线MN 有什么关系

    18、?有什么关系?ABCMNPABC探索新知探索新知追问追问2上面的问题说明上面的问题说明“如果如果ABC 和和ABC关于直线关于直线MN 对称,那么,直线对称,那么,直线MN 垂直垂直线段线段AA,BB和和CC,并且直线,并且直线MN 还平分线段还平分线段AA,BB和和CC”如如果将其中的果将其中的“三角形三角形”改为改为“四边形四边形”“”“五边形五边形”其其他条件不变,上述结论还成他条件不变,上述结论还成立吗?立吗?ABCMNPABC经过线段中点并且垂直经过线段中点并且垂直于这条线段的直线,叫做这于这条线段的直线,叫做这条线段的垂直平分线条线段的垂直平分线 探索新知探索新知问题问题3如图,如

    19、图,ABC 和和ABC关于直线关于直线MN 对称,点对称,点A,B,C分别是点分别是点A,B,C 的对称点,线的对称点,线段段AA,BB,CC与直线与直线MN 有什么关系?有什么关系?ABCMNPABC探索新知探索新知追问追问3你能用数学语言概括前面的结论吗?你能用数学语言概括前面的结论吗?成轴对称的两个图形的性质:成轴对称的两个图形的性质:如果两个图形关于某条如果两个图形关于某条直线对称,那么对称轴是任直线对称,那么对称轴是任何一对对应点所连线段的垂何一对对应点所连线段的垂直平分线即对称点所连线直平分线即对称点所连线段被对称轴垂直平分;对称段被对称轴垂直平分;对称轴垂直平分对称点所连线段轴垂

    20、直平分对称点所连线段 ABCMNPABC结论:结论:直线直线l 垂直线段垂直线段AA,BB,直线直线l平分线段平分线段AA,BB(或直(或直线线l 是线段是线段AA,BB的垂直平分的垂直平分线)线)探索新知探索新知问题问题4下图是一个轴对称图形,你能发现什么结下图是一个轴对称图形,你能发现什么结 论?能说明理由吗?论?能说明理由吗?ABlAB追问你能用数学语言概括前面追问你能用数学语言概括前面的结论吗?的结论吗?探索新知探索新知问题问题4下图是一个轴对称图形,你能发现什么结下图是一个轴对称图形,你能发现什么结论?能说明理由吗?论?能说明理由吗?ABlAB轴对称图形的性质:轴对称图形的性质:轴对

    21、称图形的对称轴,是任何轴对称图形的对称轴,是任何一对对应点所连线段的垂直平分线一对对应点所连线段的垂直平分线 探索新知探索新知问题问题4下图是一个轴对称图形,你能发现什么结下图是一个轴对称图形,你能发现什么结 论?能说明理由吗?论?能说明理由吗?ABlAB课堂练习课堂练习练习练习1 1如图所示的每个图形是轴对称图形吗?如如图所示的每个图形是轴对称图形吗?如果是,指出它的对称轴果是,指出它的对称轴 课堂练习课堂练习练习练习2如图所示的每幅图形中的两个图案是轴对称如图所示的每幅图形中的两个图案是轴对称的吗?如果是,试着找出它们的对称轴,并找出一对对的吗?如果是,试着找出它们的对称轴,并找出一对对称点称点 (1)本节课学习了哪些主要内容?)本节课学习了哪些主要内容?(2)轴对称图形和两个图形成轴对称的区别与联系是)轴对称图形和两个图形成轴对称的区别与联系是 什么?什么?(3)成轴对称的两个图形有什么性质?轴对称图形有)成轴对称的两个图形有什么性质?轴对称图形有 什么性质?我们是怎么探究这些性质的?什么性质?我们是怎么探究这些性质的?课堂小结课堂小结教科书习题教科书习题13.1第第1、2、3、4、5题题 布置作业布置作业

    展开阅读全文
    提示  163文库所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
    关于本文
    本文标题:人教初中数学九上-《圆周角》课件-(高效课堂)获奖-人教数学2022-.ppt
    链接地址:https://www.163wenku.com/p-6672286.html

    Copyright@ 2017-2037 Www.163WenKu.Com  网站版权所有  |  资源地图   
    IPC备案号:蜀ICP备2021032737号  | 川公网安备 51099002000191号


    侵权投诉QQ:3464097650  资料上传QQ:3464097650
       


    【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。

    163文库