书签 分享 收藏 举报 版权申诉 / 36
上传文档赚钱

类型人教初中数学九上《一元二次方程的解法复习》课件-(高效课堂)获奖-人教数学2022-.ppt

  • 上传人(卖家):ziliao2023
  • 文档编号:6672181
  • 上传时间:2023-07-26
  • 格式:PPT
  • 页数:36
  • 大小:1.25MB
  • 【下载声明】
    1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
    2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
    3. 本页资料《人教初中数学九上《一元二次方程的解法复习》课件-(高效课堂)获奖-人教数学2022-.ppt》由用户(ziliao2023)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
    4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
    5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
    配套讲稿:

    如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。

    特殊限制:

    部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。

    关 键  词:
    一元二次方程的解法复习 初中 数学 一元 二次方程 解法 复习 课件 高效 课堂 获奖 2022 下载 _九年级上册_人教版(2024)_数学_初中
    资源描述:

    1、一元二次方程的解法复习一元二次方程的解法复习你学过一元二次方程的哪些解法你学过一元二次方程的哪些解法?因式分解法因式分解法开平方法开平方法配方法配方法公式法公式法你能说出每一种解法的特点吗你能说出每一种解法的特点吗?方程的左边是完全平方式方程的左边是完全平方式,右边是非右边是非负数负数;即形如即形如x x2 2=a=a(a0)(a0)1212xa,xaxa,xa1.1.化化1:1:把二次项系数化为把二次项系数化为1 1;2.2.移项移项:把常数项移到方程的右边把常数项移到方程的右边;3.3.配方配方:方程两边同加方程两边同加一次项系数一次项系数 一半的平方一半的平方;4.4.变形变形:化成化成

    2、5.5.开平方开平方,求解求解(x xm m)a a+=2 2“配方法解方程的根本步骤配方法解方程的根本步骤一除、二移、三配、四化、五解一除、二移、三配、四化、五解.用用公式法公式法解一元二次方程的解一元二次方程的前提前提是是:1.1.必需是一般形式的一元二次方程必需是一般形式的一元二次方程:ax ax2 2+bx+c=0(a0).+bx+c=0(a0).2 2-4ac0.-4ac0.0 04ac4acb b.2a2a4ac4acb bb bx x2 22 21.1.用因式分解法的用因式分解法的条件条件是是:方程左边能够方程左边能够 分解分解,而右边等于零而右边等于零;2.2.理论理论依据依据

    3、是是:如果两个因式的积等于零如果两个因式的积等于零 那么至少有一个因式等于零那么至少有一个因式等于零.因式分解法解一元二次方程的一般因式分解法解一元二次方程的一般步骤步骤:一移一移-方程的右边方程的右边=0;=0;二分二分-方程的左边因式分解方程的左边因式分解;三化三化-方程化为两个一元一次方程方程化为两个一元一次方程;四解四解-写出方程两个解写出方程两个解;请用四种方法解以下方程请用四种方法解以下方程:4(x 4(x1)2=(2x1)2=(2x5)25)2先考虑开平方法先考虑开平方法,再用因式分解法再用因式分解法;最后才用公式法和配方法最后才用公式法和配方法;1.1.关于关于y y的一元二次

    4、方程的一元二次方程2y(y-3)=2y(y-3)=-4-4的一般形式是的一般形式是_,_,它它的二次项系数是的二次项系数是_,_,一次项是一次项是_,_,常数项是常数项是_2y2-6y+4=02-6y43.3.假设假设x=2x=2是方程是方程x2+ax-8=0 x2+ax-8=0的解,那么的解,那么a=a=2 21A xy 250B x 238C xx 3862DxxB2 2、以下方程是一元二次方程的是、以下方程是一元二次方程的是C4.4.下面是某同学在一次数学测验中解答下面是某同学在一次数学测验中解答的填空题,其中答对的是的填空题,其中答对的是 A A、假设、假设x2=4x2=4,那么,那么

    5、x=2 x=2 B B、假设、假设3x2=6x3x2=6x,那么,那么x=2x=2C C、假设、假设x2+x-k=0 x2+x-k=0的一个根是的一个根是1 1,那么,那么k=2k=223222D、D、若若的的值值为为零零,则则xxxx3.3.公式法公式法:221.222.530按按要要求求解解下下列列方方程程:因因式式分分解解法法:3 3配配方方法法:2 2xx xxx 2112112 2xxyyy总结:方程中有括号时,应先用整体思想考虑有总结:方程中有括号时,应先用整体思想考虑有没有简单方法,假设看不出适宜的方法时,那么没有简单方法,假设看不出适宜的方法时,那么把它去括号并整理为一般形式再

    6、选取合理的方法。把它去括号并整理为一般形式再选取合理的方法。x x2 2-3x+1=0 -3x+1=0 3x 3x2 2-1=0 -1=0 -3t -3t2 2+t=0 +t=0 x x2 2-4x=2 -4x=2 2x 2x2 2x=0 x=0 5(m+2)5(m+2)2 2=8=8 3y 3y2 2-y-1=0 -y-1=0 2x 2x2 2+4x-1=0 +4x-1=0 (x-2)(x-2)2 2=2(x-2)=2(x-2)适合运用直接开平方法适合运用直接开平方法 ;适合运用因式分解法适合运用因式分解法 ;适合运用公式法适合运用公式法 ;适合运用配方法适合运用配方法 .一般地,当一元二次

    7、方程一次项系数一般地,当一元二次方程一次项系数为为0 0时时ax2+c=0ax2+c=0,应选用直接开平方,应选用直接开平方法;假设常数项为法;假设常数项为0 0 ax2+bx=0 ax2+bx=0,应,应选用因式分解法;假设一次项系数和常选用因式分解法;假设一次项系数和常数项都不为数项都不为0(ax2+bx+c=00(ax2+bx+c=0,先化为一,先化为一般式,看一边的整式是否容易因式分解,般式,看一边的整式是否容易因式分解,假设容易,宜选用因式分解法,不然选假设容易,宜选用因式分解法,不然选用公式法;不过当二次项系数是用公式法;不过当二次项系数是1 1,且一,且一次项系数是偶数时,用配方

    8、法也较简单。次项系数是偶数时,用配方法也较简单。我的发现 公式法虽然是万能的,对任何一元二公式法虽然是万能的,对任何一元二次方程都适用,但不一定是最简单的,次方程都适用,但不一定是最简单的,因此在解方程时我们首先考虑能否应用因此在解方程时我们首先考虑能否应用“直接开平方法、直接开平方法、“因式分解法等因式分解法等简单方法,假设不行,再考虑公式法简单方法,假设不行,再考虑公式法适当也可考虑配方法适当也可考虑配方法用最好的方法求解以下方程用最好的方法求解以下方程1)1)3x-23x-2-49=0 -49=0 2)2)3x-43x-4=4x-34x-3 3)4y=13)4y=1 y y32选择适当的

    9、方法解以下方程选择适当的方法解以下方程:x x2 22 21 1)1 1)(x x(x x8 81 1)(3 3x x1 1)(2 2x x7 78 84 49 97 7)x x(2 2x x6 6 2 2x x7 7)x x(3 3x x5 59 9x x2 2)(x x4 4 4 4x x1 13 3x x3 32 2x x5 5x x2 2 1 1x x2 25 51 16 61 12 22 22 22 22 22 22 2ax2+c=0 =ax2+bx=0 =ax2+bx+c=0 =因式分解法因式分解法公式法配方法公式法配方法2 2、公式法虽然是万能的,对任何一元二次方程都适用,、公式

    10、法虽然是万能的,对任何一元二次方程都适用,但不一定但不一定 是最简单的,因此在解方程时我们首先考是最简单的,因此在解方程时我们首先考虑能否应用虑能否应用“直接开平方法、直接开平方法、“因式分解法等简单因式分解法等简单方法,假设不行,再考虑公式法适当也可考虑配方法方法,假设不行,再考虑公式法适当也可考虑配方法3 3、方程中有括号时,应先用整体思想考虑有没有简单方、方程中有括号时,应先用整体思想考虑有没有简单方法,假设看不出适宜的方法时,那么把它去括号并整理为法,假设看不出适宜的方法时,那么把它去括号并整理为一般形式再选取合理的方法。一般形式再选取合理的方法。1 1、直接开平方法直接开平方法因式分

    11、解法因式分解法 轴对称轴对称引言引言对称现象无处不在,从自然景观到艺术作对称现象无处不在,从自然景观到艺术作品,从建筑物到交通标志,甚至日常生活用品,都可品,从建筑物到交通标志,甚至日常生活用品,都可以找到对称的例子,对称给我们带来美的感受!以找到对称的例子,对称给我们带来美的感受!引出新知引出新知探索新知探索新知问题问题1 1如图,把一张纸对折,剪出一个图案折如图,把一张纸对折,剪出一个图案折痕处不要完全剪断,再翻开这张对折的纸,就得到了痕处不要完全剪断,再翻开这张对折的纸,就得到了美丽的窗花观察得到的窗花,你能发现它们有什么共美丽的窗花观察得到的窗花,你能发现它们有什么共同的特点吗?同的特

    12、点吗?追问追问你能举出一些轴对称图形的例子吗?你能举出一些轴对称图形的例子吗?探索新知探索新知如果一个平面图形沿一条直线折叠,直线两旁的部如果一个平面图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形就叫做轴对称图形,这条直分能够互相重合,这个图形就叫做轴对称图形,这条直 线就是它的对称轴这时,我们也说这个图形关于这条线就是它的对称轴这时,我们也说这个图形关于这条 直线成轴对称直线成轴对称共同特征:共同特征:每一对图形沿着虚线折叠,左边的图形都能与右边每一对图形沿着虚线折叠,左边的图形都能与右边的图形重合的图形重合 探索新知探索新知问题问题2 2观察下面每对图形如图,你能类比前观察下面每

    13、对图形如图,你能类比前面的内容概括出它们的共同特征吗?面的内容概括出它们的共同特征吗?追问追问1你能再举出一些两个图形成轴对称的例子吗?你能再举出一些两个图形成轴对称的例子吗?探索新知探索新知把一个图形沿着某一条直线折叠,如果它能够与另把一个图形沿着某一条直线折叠,如果它能够与另一个图形重合,那么就说这两个图形关于这条直线成一个图形重合,那么就说这两个图形关于这条直线成轴对称,这条直线叫做对称轴,折叠后重合的点是对轴对称,这条直线叫做对称轴,折叠后重合的点是对应点,叫做对称点应点,叫做对称点 两者的区别:两者的区别:轴对称图形指的是一个图形沿对称轴折叠后这个图轴对称图形指的是一个图形沿对称轴折

    14、叠后这个图形的两局部能完全重合,而两个图形成轴对称指的是两形的两局部能完全重合,而两个图形成轴对称指的是两个图形之间的位置关系,这两个图形沿对称轴折叠后能个图形之间的位置关系,这两个图形沿对称轴折叠后能够重合够重合探索新知探索新知追问追问2你能结合具体的图形说明轴对称图形和两个你能结合具体的图形说明轴对称图形和两个 图形成轴对称有什么区别与联系吗图形成轴对称有什么区别与联系吗?两者的联系:两者的联系:把成轴对称的两个图形看成一个整体,它就是一个把成轴对称的两个图形看成一个整体,它就是一个轴对称图形把一个轴对称图形沿对称轴分成两个图轴对称图形把一个轴对称图形沿对称轴分成两个图形,这两个图形关于这

    15、条轴对称形,这两个图形关于这条轴对称 探索新知探索新知追问追问2你能结合具体的图形说明轴对称图形和两个你能结合具体的图形说明轴对称图形和两个 图形成轴对称有什么区别与联系吗图形成轴对称有什么区别与联系吗?追问追问1你能说明其中你能说明其中的道理吗?的道理吗?探索新知探索新知问题问题3如图,如图,ABC 和和ABC关于直线关于直线MN 对称,点对称,点A,B,C分别是点分别是点A,B,C 的对称点,线的对称点,线 段段AA,BB,CC与直线与直线MN 有什么关系?有什么关系?ABCMNPABC探索新知探索新知追问追问2 2上面的问题说明上面的问题说明“如果如果ABC ABC 和和ABCABC关于

    16、直线关于直线MN MN 对称,那么,直线对称,那么,直线MN MN 垂直垂直线段线段AAAA,BBBB和和CCCC,并且直线,并且直线MN MN 还平分线段还平分线段AAAA,BBBB和和CCCC如如果将其中的果将其中的“三角形改为三角形改为“四边形四边形“五边形五边形其其他条件不变,上述结论还成他条件不变,上述结论还成立吗?立吗?ABCMNPABC经过线段中点并且垂直经过线段中点并且垂直于这条线段的直线,叫做这于这条线段的直线,叫做这条线段的垂直平分线条线段的垂直平分线 探索新知探索新知问题问题3如图,如图,ABC 和和ABC关于直线关于直线MN 对称,点对称,点A,B,C分别是点分别是点A

    17、,B,C 的对称点,线的对称点,线段段AA,BB,CC与直线与直线MN 有什么关系?有什么关系?ABCMNPABC探索新知探索新知追问追问3你能用数学语言概括前面的结论吗?你能用数学语言概括前面的结论吗?成轴对称的两个图形的性质:成轴对称的两个图形的性质:如果两个图形关于某条如果两个图形关于某条直线对称,那么对称轴是任直线对称,那么对称轴是任何一对对应点所连线段的垂何一对对应点所连线段的垂直平分线即对称点所连线直平分线即对称点所连线段被对称轴垂直平分;对称段被对称轴垂直平分;对称轴垂直平分对称点所连线段轴垂直平分对称点所连线段 ABCMNPABC结论:结论:直线直线l l 垂直线段垂直线段AA

    18、AA,BBBB,直线直线l l平分线段平分线段AAAA,BBBB或直或直线线l l 是线段是线段AAAA,BBBB的垂直平分的垂直平分线线 探索新知探索新知问题问题4 4以下图是一个轴对称图形,你能发现什么以下图是一个轴对称图形,你能发现什么结结 论?能说明理由吗?论?能说明理由吗?ABlAB追问你能用数学语言概括前面追问你能用数学语言概括前面的结论吗?的结论吗?探索新知探索新知问题问题4 4以下图是一个轴对称图形,你能发现什么以下图是一个轴对称图形,你能发现什么结结论?能说明理由吗?论?能说明理由吗?ABlAB轴对称图形的性质:轴对称图形的性质:轴对称图形的对称轴,是任何轴对称图形的对称轴,

    19、是任何一对对应点所连线段的垂直平分线一对对应点所连线段的垂直平分线 探索新知探索新知问题问题4 4以下图是一个轴对称图形,你能发现什么以下图是一个轴对称图形,你能发现什么结结 论?能说明理由吗?论?能说明理由吗?ABlAB课堂练习课堂练习练习练习1 1如下图的每个图形是轴对称图形吗?如如下图的每个图形是轴对称图形吗?如果是,指出它的对称轴果是,指出它的对称轴 课堂练习课堂练习练习练习2 2如下图的每幅图形中的两个图案是轴对称如下图的每幅图形中的两个图案是轴对称的吗?如果是,试着找出它们的对称轴,并找出一对对的吗?如果是,试着找出它们的对称轴,并找出一对对称点称点 1 1本节课学习了哪些主要内容?本节课学习了哪些主要内容?2 2轴对称图形和两个图形成轴对称的区别与联系是轴对称图形和两个图形成轴对称的区别与联系是 什么?什么?3 3成轴对称的两个图形有什么性质?轴对称图形有成轴对称的两个图形有什么性质?轴对称图形有 什么性质?我们是怎么探究这些性质的?什么性质?我们是怎么探究这些性质的?课堂小结课堂小结教科书习题教科书习题13.1第第1、2、3、4、5题题 布置作业布置作业

    展开阅读全文
    提示  163文库所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
    关于本文
    本文标题:人教初中数学九上《一元二次方程的解法复习》课件-(高效课堂)获奖-人教数学2022-.ppt
    链接地址:https://www.163wenku.com/p-6672181.html
    ziliao2023
         内容提供者      个人认证 实名认证

    Copyright@ 2017-2037 Www.163WenKu.Com  网站版权所有  |  资源地图   
    IPC备案号:蜀ICP备2021032737号  | 川公网安备 51099002000191号


    侵权投诉QQ:3464097650  资料上传QQ:3464097650
       


    【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。

    163文库