安徽省2016-2017学年高二数学下学期第三次月考试题 理(有答案解析,word版).doc
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《安徽省2016-2017学年高二数学下学期第三次月考试题 理(有答案解析,word版).doc》由用户(aben)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 安徽省 2016 2017 年高 数学 学期 第三次 月考 试题 答案 解析 word 下载 _考试试卷_数学_高中
- 资源描述:
-
1、 - 1 - 安徽省 2016-2017 学年高二下学期第三次月考 数学(理)试题 第 卷(共 60 分) 一、选择题:本大题共 12 个小题 ,每小题 5 分 ,共 60 分 .在每小题给出的四个选项中,只有一项是符合题目要求的 . 1. 复数 的共轭复数 ( ) A. B. C. D. 【答案】 B 【解析】 ,选 B. 2. 函数 的最大值为( ) A. B. C. D. 【答案】 D 【解析】 ,所以当 时 , ; 当时 , ,因此当 时 , 取最大值 ,选 D. 3. 观察下列各式: , , , , ,则 的末位数字为( ) A. B. C. D. 【答案】 A 【解析】 末位数字变
2、化周期为 4,而 ,所以 的末位数字为 的末位数字 1,选 A. 4. 设离散型随机变量 的分布列为: 则 ( ) A. B. C. D. b - 2 - 【答案】 B 【解析】 由题意得 , 选 B. 5. 设函数 ,曲线 在点 处的切线方程为,则 ( ) A. B. C. D. 【答案】 C 【解析】 , 从而, 选 C. 点睛: (1)求曲线的切线要注意 “ 过点 P 的切线 ” 与 “ 在点 P 处的切线 ” 的差异,过点 P 的切线中,点 P 不一定是切点,点 P 也不一定在已知曲线上,而在点 P 处的切线,必以点 P 为切点 . (2)利用导数的几何意义解题,主要是利用导数、切点坐
3、标、切线斜率之间的关系来进行转化 .以平行、垂直直线斜率间的关系为载体求参数的值,则要求掌握平行、垂直与斜率之间的关系,进而和导数联系起来求解 . 6. 西北某地根据历年的气象资料显示,春季中一天发生沙尘暴的概率为 ,连续两天发生沙尘暴的概率为 ,已知某天发生了 沙尘暴,则随后一天发生沙尘暴的概率为( ) A. B. C. D. 【答案】 C 【解析】 由条件概率得随后一天发生沙尘暴的概率为 , 选 C. 7. 某大学的外文系有一个翻译小组,该小组中会法语不会英语的有 1 人,英语法语都会的有2 人,从该小组任取 2 人,设 为选出的人中英语法语都会的人数,若 ,则该小组的人数为( ) A.
4、B. C. D. 【答案】 B 【解析】 由题意得 , 选B. - 3 - 8. 若 , ,则( ) A. B. C. D. 【答案】 A 【解析】 令 得 ;令 得, 选 A. 点睛:赋值法研究二项式的系数和问题 “ 赋值法 ” 普遍适用于恒等式,是一种重要的方法,对形如的式子求其展开式的各项系数之和,常用赋值法, 只需令 即可;对形如 的式子求其展开式各项系数之和,只需令即可 . 9. 已知数列 中, , ,则 ( ) A. B. C. D. 【答案】 A 【解析】 , 选 A. 10. 的展开式中, 的系数为( ) A. B. C. D. 【答案】 D 【解析】 因为 , 所以 , 即
5、, 从而 的系数为 ,选 D. 点睛:求二项展开式有关问题的常见类型及解题策略 (1)求展开式中的特定项 .可依据条件写出第 项,再由特定项的特点求出值即可 . (2)已知展开式的某项,求特定项的系数 .可由某项得出参数项,再由通项写出第 项,由- 4 - 特定项得出值,最后求出其参数 . 11. 用五种不同的颜色给图中 六个小长方形区域涂色,要求颜色齐全且有公共边的区域颜色不同,则共有涂色方法( ) A. 种 B. 种 C. 种 D. 种 【答案】 D 【解析】 其中可能共色的区域有 AC,AD,AE,AF,BE,BF,CD,CF,DF 共 9 种 ,故共有涂色方法为,选 D. 点睛:求解排
6、列、组合问题常用的解题方法: (1)元素相邻的排列问题 “ 捆邦法 ” ; (2)元素相间的排列问题 “ 插空法 ” ; (3)元素有顺序限制的排列问题 “ 除序法 ” ; (4)带有 “ 含 ” 与 “ 不含 ”“ 至多 ”“ 至少 ” 的排列组合问题 间接法 . 12. 某竞猜活动有 54 人参加 .设计者给每位参与者 1 道填空题和 3 道选择题,答对一道填空题得 2 分,答对一道选择题得 1 分,答错得 0 分,若得 分总数大于或等于 4 分可获得纪念品 .假定每位参与者答对每道填空题的概率为,答对每道选择题的概率为,且每位参与者答题互不影响 .设参与者中可获得纪念品的人数为 ,则均值
7、(数学期望) ( ) A. B. C. D. 【答案】 B 【解析】 由题意得某位参与者得 4 分的概率为 ,得 5 分的概率为 ,所以参与者获得纪念品的概率为 ,因为 ,所以 选B. 点睛:求解离散型随机变量的数学期望的一般步骤为: 第一步是 “ 判断取值 ” ,即判断随机变量的所有可能取值,以及取每个值所表示的意义; 第二步是 “ 探求概率 ” ,即利用排列组合、枚举法、概率公式 (常见的有古典概型公式、几何概型公式、互斥事件的概率和公式、独立事件的概率积公式,以及对立事件的概率公式等 ),求出随机变量取每个值时的概率; 第三步是 “ 写分布列 ” ,即按规范形式写出分布列,并注意用分布列
展开阅读全文