书签 分享 收藏 举报 版权申诉 / 30
上传文档赚钱

类型湖北省鄂州市2020年中考数学真题试题附答案.doc

  • 上传人(卖家):副主任
  • 文档编号:665803
  • 上传时间:2020-07-30
  • 格式:DOC
  • 页数:30
  • 大小:3.11MB
  • 【下载声明】
    1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
    2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
    3. 本页资料《湖北省鄂州市2020年中考数学真题试题附答案.doc》由用户(副主任)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
    4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
    5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
    配套讲稿:

    如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。

    特殊限制:

    部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。

    关 键  词:
    湖北省 鄂州市 2020 年中 数学 试题 答案 下载 _中考真题_中考复习_数学_初中
    资源描述:

    1、 湖北省鄂州市湖北省鄂州市 2020 年中考数学真题年中考数学真题 一、选择题一、选择题 1.-2020 的相反数是( ) A. 2020 B. -2020 C. 1 2020 D. 1 2020 【答案】A 【解析】 【分析】 根据相反数直接得出即可. 【详解】-2020 的相反数是 2020, 故选 A. 【点睛】本题是对相反数的考查,熟练掌握相反数知识是解决本题的关键. 2.下列运算正确的是( ) A. 2 235xxx B. 33 ( 2 )6xx C. 325 236xxx D. 2 (32)(23 )94xxx 【答案】C 【解析】 分析】 利用合并同类项、积的乘方、单项式乘单项式

    2、、多项式乘多项式直接计算判断即可 【详解】解:A. 235xxx,选项错误; B. 33 ( 2 )8xx,选项错误; C. 325 236xxx,选项正确; D. 2 (32)(23 )94xxx ,选项错误; 故选:C 【点睛】本题考查了整式的运算,熟练掌握运算法则是解题的关键 3.如图是由 5 个小正方体组合成的几何体,则其俯视图为( ) A. B. C. D. 【答案】A 【解析】 【分析】 从该组合体的俯视图看从左至右共有三列,从左到右第一列有一个正方形,第二列有一个正方形,第三列 有两个正方形,据此找到答案即可 【详解】解:从该组合体的俯视图看从左至右共有三列,从左到右第一列有一个

    3、正方形,第二列有一个正 方形,第三列有两个正方形,可得只有选项 A 符合题意 故选:A 【点睛】此题主要考查了三视图的识别,注意:俯视图是从上往下看到的图形 4.面对 2020 年突如其来的新冠疫情,党和国家及时采取“严防严控”措施,并对新冠患者全部免费治疗据 统计共投入约 21 亿元资金21 亿用科学记数法可表示为( ) A. 8 0.21 10 B. 8 2.1 10 C. 9 2.1 10 D. 10 0.21 10 【答案】C 【解析】 【分析】 根据科学记数法的表示方法表示即可 【详解】21 亿=2100000000=21 109 故选 C 【点睛】本题考查科学记数法的表示,关键在于

    4、牢记表示方法 5.如图,/ab,一块含45的直角三角板的一个顶点落在其中一条直线上,若 165 ,则2的度数为 ( ) A. 25 B. 35 C. 55 D. 65 【答案】A 【解析】 【分析】 作平行 a 和 b 的平行线,再根据平行的性质可知31 ,再算出4即可得出2 【详解】如图所示,过直角顶点作 ca, /a b, abc, 3165 , 4906525 , 2425 故选 A 【点睛】本题考查平行的性质,关键在于利用割补法将直角分成两个角度进行转换 6.一组数据 4,5,x,7,9 的平均数为 6,则这组数据的众数为( ) A. 4 B. 5 C. 7 D. 9 【答案】B 【解

    5、析】 【分析】 先根据平均数的公式计算出 x 的值,再求这组数据的众数即可 【详解】解:4,5,x,7,9 的平均数为 6, 4579 6 5 x , 解得:x=5, 这组数据为:4,5,5,7,9, 这组数据的众数为 5 故选:B 【点睛】本题考查平均数及众数,熟练掌握平均数、众数的意义是解题的关键 7.目前以5G等为代表的战略性新兴产业蓬勃发展某市 2019 年底有5G用户 2 万户,计划到 2021 年底全 市5G用户数累计达到 8.72 万户设全市5G用户数年平均增长率为x,则x值为( ) A. 20% B. 30% C. 40% D. 50% 【答案】C 【解析】 【分析】 先用含x

    6、的代数式表示出2020年底、 2021年底5G用户的数量, 然后根据2019年底到2021年底这三年的5G 用户数量之和=8.72 万户即得关于 x 的方程,解方程即得答案 【详解】解:设全市5G用户数年平均增长率为x,根据题意,得: 2 22 12 18.72xx, 解这个方程,得: 1 0.440%x , 2 3.4x (不合题意,舍去) x 的值为 40% 故选:C 【点睛】本题考查了一元二次方程的应用之增长率问题,属于常考题型,正确理解题意、找准相等关系是 解题的关键 8.如图, 在AOB和COD中,OAOB ,OCOD,OAOC,36AOBCOD 连接AC、 BD交于点M,连接OM下

    7、列结论: 36AMB ;ACBD;OM平分 AOD;MO平分AMD 其中正确的结论个数有( )个 A. 4 B. 3 C. 2 D. 1 【答案】B 【解析】 【分析】 由 SAS 证明 AOCBOD,得到OACOBD,由三角形的外角性质得:AMBOBDAOB OAC,得出AMBAOB36 ,正确; 根据全等三角形的性质得出OCAODB,ACBD,正确; 作 OGAC 于 G, OHBD 于 H, 如图所示: 则OGCOHD90 , 由 AAS 证明 OCGODH (AAS) , 得出 OGOH,由角平分线的判定方法得出 MO 平分AMD,正确; 由AOBCOD,得出当DOMAOM 时,OM

    8、才平分BOC,假设DOMAOM,由 AOCBOD 得出COMBOM, 由 MO 平分BMC 得出CMOBMO, 推出 COMBOM, 得 OBOC,而 OAOB,所以 OAOC,而OAOC,故错误;即可得出结论 【详解】AOBCOD36 , AOBBOCCODBOC, 即AOCBOD, AOC 和 BOD 中, OAOB AOCBOD OCOD , AOCBOD(SAS) , OCAODB,ACBD,正确; OACOBD, 由三角形的外角性质得:AMBOBDAOBOAC, AMBAOB36 ,正确; 作 OGAC 于 G,OHBD 于 H,如图所示: 则OGCOHD90 , 在 OCG 和 O

    9、DH 中, OCAODB OGCOHD OCOD , OCGODH(AAS) , OGOH, MO平分AMD,正确; AOBCOD, 当DOMAOM 时,OM 才平分BOC, 假设DOMAOM AOCBOD, COMBOM, MO 平分BMC, CMOBMO, 在 COM 和 BOM 中, COMBOM OMOM CMOBMO , COMBOM(ASA) , OBOC, OAOB OAOC 与OAOC矛盾, 错误; 正确的有; 故选 B 【点睛】本题考查了全等三角形的判定与性质、三角形的外角性质、角平分线的判定等知识;证明三角形 全等是解题的关键 9.如图, 抛物线 2 (0)yaxbxc a

    10、与x轴交于点( 1,0)A 和B, 与y轴交于点C 下列结论: 0abc; 20ab;420ab c ;30ac ,其中正确的结论个数为( ) A. 1 个 B. 2 个 C. 3 个 D. 4 个 【答案】B 【解析】 【分析】 由抛物线的开口方向判断 a 与 0 的关系,由抛物线与 y 轴的交点判断 c 与 0 的关系,进而判断;根据对称 轴0, 对称轴在 y 轴右边, 0 2 b a ,即 b0 , 抛物线与y轴的交点在x轴的下方, 0c, 0abc ,故错误; 对称轴在 1 左侧,1 2 b a -b0,故错误; 当 x=-2 时,y=4a-2b+c0,故正确; 当 x=-1 时,抛物

    11、线过 x 轴,即 a-b+c=0, b=a+c, 又 2a+b0, 2a+a+c0,即 3a+c0,故正确; 故答案选:B 【点睛】此题考查二次函数图像位置与系数的关系,数形结合是关键 10.如图,点 123 ,A A A在反比例函数 1 (0)yx x 的图象上,点 123 , n B B BB在y轴上,且 11212323 BOAB B AB B A ,直线y x 与双曲线 1 y x 交于点 111122123322 ,AB AOA B AB A B AB A,则 n B(n 为正整数)的坐标是( ) A. (2,0)n B. 1 (0, 2) n C. (0, 2 (1)n n D.

    12、(0,2)n 【答案】D 【解析】 【分析】 先求出 1 A的坐标,由题意容易得到 11 OAB为等腰直角三角形,即可得到 1 OB,然后过 2 A作 22 A HOB交 y 轴于 H, 21 A HB Hx,通过反比例函数解析式可求出 x,从而能够得到 2 OB,再同样求出 3 OB,即 可发现规律 【详解】解:联立1 yx y x ,解得1x , 1(1,1) A, 1 2OA , 由题意可知 11=45 AOB, 111 B AOA, 11 OAB为等腰直角三角形, 11 22OBOA, 过 2 A作 22 A HOB交 y 轴于 H,则容易得到 21 A HB H, 设 21 A HB

    13、 Hx,则 2( , 2)A x x, 21x x, 解得 1 2 1x , 2 2 1x (舍) , 21 2 1A HBH, 121 22 22BBBH, 2 2 2222 2OB , 用同样方法可得到 3 2 3OB , 因此可得到2 n OBn,即(0,2) n Bn 故选:D 【点睛】本题考查了反比例函数的性质,属于规律问题,求出2 n OBn是解题的关键 二、填空题二、填空题 11.因式分解: 2 21218xx =_ 【答案】 2 2(3)x 【解析】 【分析】 先提取公因式 2,再根据完全平方公式分解因式即可得到结果 【详解】原式 2 2(69)xx 2 2(3)x 考点:本题

    14、考查的是因式分解 点评:解答本题的关键是熟练掌握完全平方公式: 222 )2(aabbab 12.关于 x 的不等式组 24 50 x x 的解集是_ 【答案】25x 【解析】 【分析】 直接解不等式组即可 【详解】解:由24x,得2x , 由50 x ,得5x, 不等式组 24 50 x x 的解集是25x, 故答案为:25x 【点睛】本题考查了解不等式组,熟练掌握不等式组的解法是解题的关键 13.用一个圆心角为 120 ,半径为 4 的扇形作一个圆锥的侧面,这个圆锥的底面圆的半径为_ 【答案】 4 3 【解析】 试题分析: 1204 =2 180 r ,解得 r= 4 3 考点:弧长的计算

    15、 14.如图,点 A 是双曲线 1 (0)yx x 上一动点,连接OA,作OBOA,且使3OBOA,当点 A 在双 曲线 1 y x 上运动时,点 B 在双曲线 k y x 上移动,则 k 的值为_ 【答案】9 【解析】 【分析】 首先根据反比例函数的比例系数 k 的几何意义求得 AOC 的面积,然后证明 OACBOD,根据相似三 角形的面积的性质求得 BOD 的面积,依据反比例函数的比例系数 k 的几何意义即可求解 【详解】解:如图作 ACx 轴于点 C,作 BDx 轴于点 D 3OBOA OA OB = 1 3 点 A 是双曲线 1 (0)yx x 上 S OAC= 1 2 AOB=90

    16、, AOC+BOD=90 , 又直角 AOC 中,AOC+CAO=90 , BOD=OAC, 又ACO=BDO=90 , OACBOD, 22 s1 = 3 AOC OBD OA SOB = 1 9 19 9= 22 BOD S k=9 函数图像位于第四象限 9 故答案为:9 【点睛】本题考查了反比例函数 k 的几何意义,相似三角形的判定与性质,正确作出辅助线,证明 OACBOD 是解题关键 15.如图,半径为2cm的O与边长为2cm的正方形ABCD的边AB相切于 E,点 F 为正方形的中心,直 线OE过F点当正方形ABCD沿直线OF以每秒(23)cm的速度向左运动_秒时,O与 正方形重叠部分

    17、的面积为 2 2 3 cm 3 【答案】1 或11 6 3 + 【解析】 【分析】 将正方形向左平移,使得正方形与圆的重叠部分为弓形,根据题目数据求得此时弓形面积符合题意,由此 得到 OF 的长度,然后结合运动速度求解即可,特别要注意的是正方形沿直线运动,所以需要分类讨论 【详解】解:当正方形运动到如图 1 位置,连接 OA,OB,AB 交 OF 于点 E 此时正方形与圆的重叠部分的面积为 S扇形OAB-SOAB 由题意可知:OA=OB=AB=2,OFAB OAB 为等边三角形 AOB=60 ,OEAB 在 Rt AOE 中,AOE=30 ,AE= 1 1 2 OA ,OE= 3 S扇形OAB

    18、-SOAB 2 60212 =233 36023 -创=- OF= 31 点 F 向左运动3 ( 3 1)23-+=-个单位 所以此时运动时间为 23 =1 23 - - 秒 同理,当正方形运动到如图 2 位置,连接 OC,OD,CD 交 OF 于点 E 此时正方形与圆的重叠部分的面积为 S扇形OCD-SOCD 由题意可知:OC=OD=CD=2,OFCD OCD 为等边三角形 COD=60 ,OECD 在 Rt COE 中,COE=30 ,CE= 1 OC1 2 =,OE= 3 S扇形OCD-SOCD 2 60212 =233 36023 -创=- OF= 31 点 F 向左运动3 ( 3 1

    19、)43+=+个单位 所以此时运动时间为 43 =11 6 3 23 + + - 秒 综上,当运动时间为 1 或11 6 3+秒时,O 与正方形重叠部分的面积为 2 2 3(cm ) 3 - 故答案为:1 或11 6 3+ 【点睛】本题考查正方形的性质,扇形面积的计算及等边三角形的判定和性质,题目难度不大,注意分情 况讨论是本题的解题关键 16.如图, 已知直线34yx 与 x、 y 轴交于 A、 B 两点,O的半径为 1, P 为AB上一动点,PQ切 O 于 Q 点当线段PQ长取最小值时,直线PQ交 y 轴于 M 点,a 为过点 M 的一条直线,则点 P 到直线 a 的 距离的最大值为_ 【答

    20、案】2 3 【解析】 【分析】 先找到PQ长取最小值时 P 的位置即为 OPAB 时,然后画出图形,由于 PM 即为 P 到直线 a 的距离的最 大值,求出 PM 长即可 【详解】解:如图, 在直线34yx 上,x=0 时,y=4,y=0 时,x= 4 3 3 , OB=4,OA= 4 3 3 , 3 tan 3 OA OBA OB , OBA=30 , 由PQ切O于 Q 点,可知 OQPQ, 22 =PQOPOQ, 由于 OQ=1,因此当 OP 最小时PQ长取最小值,此时 OPAB, 1 2 2 OPOB,此时 22 = 21 = 3PQ , 22 = 42 =2 3BP , 1 2 OQO

    21、P,即OPQ=30 , 若使 P 到直线 a 的距离最大,则最大值为 PM,且 M 位于 x 轴下方, 过 P 作 PEy 轴于 E, 1 3 2 EPBP, 22 2 333BE , 4 3 1OE , 1 2 OEOP,OPE=30 , EPM=30 +30 =60 ,即EMP=30 , 22 3PMEP , 故答案:2 3 【点睛】本题考查了圆和函数的综合问题,题解题中含义找到点的位置是解题的关键 三、解答题三、解答题 17.先化简 22 2 4421 111 xxxx xxx ,再从2,1,0,1,2 中选一个合适的数作为 x 的值代入求值 【答案】 2 x ,-1 【解析】 【分析】

    22、 先化简分式,然后在确保分式有意义的前提下,确定 x 的值并代入计算即可 【详解】解: 22 2 4421 111 xxxx xxx = 2 211 1121 xx xxx xx = 21 11 x x xx = 2 11 x x xx x x = 22 1 x x x = 21 1 x x x = 2 x 在2、1、0、1、2 中只有当 x=-2 时,原分式有意义,即 x 只能取-2 当 x=-2 时, 22 1 2x 【点睛】本题考查了分式的化简求值和分式有意义的条件,正确将分式化简和选取合适的 x 的值是解答本 题的关键 18.如图,在平行四边形ABCD中,对角线AC与BD交于点 O,点

    23、 M,N 分别为OA、OC的中点,延长 BM至点 E,使EMBM,连接DE (1)求证:AMBCND; (2)若2BDAB,且5AB,4DN ,求四边形DEMN的面积 【答案】(1)见解析;(2)24 【解析】 【分析】 (1)由四边形 ABCD 是平行四边形得出 AB=CD,AB/CD,进而得到BAC=DCA,再结合 AO=CO,M,N 分别是 OA 和 OC 中点即可求解; (2)证明 ABO 是等腰三角形,结合 M 是 AO 的中点,得到BMO=EMO=90 ,同时 DOC 也是等腰三 角形,N 是 OC 中点,得到DNO=90 ,得到 EM/DN,再由(1)得到 EM=DN,得出四边形

    24、 EMND 为矩形, 进而求出面积 【详解】解:(1)证明:四边形 ABCD 是平行四边形, AB=CD,AB/CD,OA=OC, BAC=DCA, 又点 M,N 分别为OA、OC的中点, 11 22 AMAOCOCN, 在AMB和CND中, ABCD BACDCA AMCN , ()AMBCND SAS (2)BD=2BO,又已知 BD=2AB, BO=AB,ABO 为等腰三角形; 又 M 为 AO 的中点, 由等腰三角形的“三线合一”性质可知:BMAO, BMO=EMO=90 , 同理可证 DOC 也为等腰三角形, 又 N 是 OC 的中点, 由等腰三角形的“三线合一”性质可知:DNCO,

    25、 DNO=90 , EMO+DNO=90 +90 =180 , EM/DN, 又已知 EM=BM,由(1)中知 BM=DN, EM=DN, 四边形 EMND 为平行四边形, 又EMO=90 ,四边形 EMND 为矩形, 在 Rt ABM 中,由勾股定理有: 2222 543AMABBM , AM=CN=3, MN=MO+ON=AM+CN=3+3=6, 6 424 EMND SMN ME 矩形 故答案为:24 【点睛】本题考查了平行四边形的性质、矩形的判定和性质、矩形的面积公式等,熟练掌握其性质和判定 方法是解决此类题的关键 19.某校为了了解全校学生线上学习情况,随机选取该校部分学生,调查学生

    26、居家学习时每天学习时间(包 括线上听课及完成作业时间) 以下是根据调查结果绘制的统计图表 请你根据图表中的信息完成下列问题: 频数分布表 学习时间分组 频数 频率 A 组(01x ) 9 m B 组(12x ) 18 0.3 C 组(23x ) 18 0.3 D 组(34x ) n 0.2 E 组(45x ) 3 0.05 (1)频数分布表中m_,n_,并将频数分布直方图补充完整; (2)若该校有学生 1000 名,现要对每天学习时间低于 2 小时的学生进行提醒,根据调查结果,估计全校 需要提醒的学生有多少名? (3)已知调查的 E 组学生中有 2 名男生 1 名女生,老师随机从中选取 2 名

    27、学生进一步了解学生居家学习情 况请用树状图或列表求所选 2 名学生恰为一男生一女生的概率 【答案】 (1)0.15,12,补充频数分布直方图见解析; (2)450 名; (3) 2 3 【解析】 【分析】 (1)先求出选取的学生数,再根据频率计算频数,根据频数计算频率; (2)先求出选取该校部分学生每天学习时间低于 2 小时的学生的频率,然后再估计该校有学生 1000 名中, 每天学习时间低于 2 小时的学生数即可; (3)先通过列表法确定所有情况数和所需情况数,然后用概率的计算公式计算即可 【详解】解: (1)随机选取学生数为:18 0.3=60 人 则 m=9 60=0.15,n=60 0

    28、.2=12; 故答案为 0.15,12; (2)根据频数分布表可知: 选取该校部分学生每天学习时间低于 2 小时为 0.3+0.15=0.45 则若该校有学生 1000 名,每天学习时间低于 2 小时的学生数有 1000 0.45=450 所以,估计全校需要提醒的学生有 450 名; (3)根据题意列表如下: 则共有 6 种情况,其中所选 2 名学生恰为一男生一女生的情况数 4 种 所以所选 2 名学生恰为一男生一女生的概率为 42 63 【点睛】本题主要考查了树状图法或列表法求概率以及频数分布直方图的运用,掌握频数和频率的关系以 及树状图或列表法的正确应用是解答本题的关键 20.已知关于 x

    29、 的方程 2 410 xxk 有两实数根 (1)求 k 的取值范围; (2)设方程两实数根分别为 1 x、 2 x,且 12 12 33 4x x xx ,求实数 k 的值 【答案】 (1)k3; (2)3k 【解析】 【分析】 (1)根据方程有两个实数根得出 2 44 11k 0,解之可得 (2) 利用根与系数的关系可用 k 表示出 x1x2和 x1x2的值, 根据条件可得到关于 k 的方程, 可求得 k 的值, 注意利用根的判别式进行取舍 【详解】解: (1)关于 x 的一元二次方程 2 410 xxk 有两个实数根, 0,即 2 44 11k 0, 解得:k3, 故 k 的取值范围为:k

    30、3 (2)由根与系数的关系可得 12 4xx, 12 1x xk 由 12 12 33 4x x xx 可得 12 12 12 3 4 xx x x x x , 代入 x1x2和 x1x2的值,可得: 12 1 4 1 k k 解得: 1 3k , 2 5k (舍去) , 经检验,3k 是原方程的根, 故3k 【点睛】本题考查了一元二次方程 ax2bxc0(a0,a,b,c 为常数)根的判别式当 0,方程有 两个不相等的实数根;当 0,方程有两个相等的实数根;当 0,方程没有实数根以及根与系数的关 系,也考查了解一元二次方程和分式方程,注意分式方程要验根 21.鄂州市某校数学兴趣小组借助无人机

    31、测量一条河流的宽度CD如图所示,一架水平飞行的无人机在 A 处测得正前方河流的左岸 C 处的俯角为,无人机沿水平线AF方向继续飞行 50 米至 B 处,测得正前方 河流右岸 D 处的俯角为 30 线段AM的长为无人机距地面的铅直高度,点 M、C、D 在同一条直线上其 中tan2,50 3MC米 (1)求无人机的飞行高度AM; (结果保留根号) (2)求河流的宽度CD (结果精确到 1 米,参考数据:21.41, 31.73) 【答案】 (1)100 3米; (2)263 米 【解析】 【分析】 (1)根据正切的定义即可求出 AM 的长; (2)过点 B 作 BHMD,根据三角函数求出 DH 的

    32、长,利用 CD=DH-CH 即可求解 【详解】 (1)由题意可得 AFMD ACM=FAC= 在 Rt ACM 中,AM=CMtanACM=CMtan 50 3 2100 3 (米); (2)如图,过点 B 作 BHMD, 在 Rt BDH 中,BDH=FBD=30 ,BH=100 3 DH=BH tan30 =100 3 3 3 =300 米, AMDM,AMAF 四边形 ABHM 是矩形 MH=AB=50 米 CH=CM-MH=50 3-50(米) CD=DH-CH=300-(50 3-50)=350-50 3263(米) 故河流的宽度CD为 263 米 【点睛】此题主要考查三角函数的应用

    33、,解题的关键是熟知解直角三角形的方法 22.如图所示:O与ABC的边BC相切于点 C, 与AC、AB分别交于点 D、 E, /DE OBDC是O 的直径连接OE,过 C 作/CG OE交O于 G,连接DG、EC,DG与EC交于点 F (1)求证:直线AB与O相切; (2)求证:AE EDAC EF; (3)若 1 3,tan 2 EFACE时,过 A 作/AN CE交O于 M、N 两点(M 在线段AN上) ,求AN的 长 【答案】(1)详见解析;(2)详见解析;(3) 10+2 5 【解析】 【分析】 (1)由两组平行条件推出DEO=BOE,即可利用 SAS 证明 BOEBOC,进而推出 AB

    34、 是圆的切线; (2)将 DG 与 OE 的交点作为 H,根据直角的性质得出 AE/DF,可得 AECDFC,得出 AEDF ACDC ,再根据圆 周角定理求出ECD=EDF,再由一组公共角可得 FEDDEC,得出 DFEF DCED ,进而推出 AEEF ACED , 即AE EDAC EF; (3)先根据题意算出 EC,再根据勾股定理得出直径 CD,从而得出半径,再利用(2)中的比例条件将 AC 算出来,延 长 BO 到 I,连接 ON,根据垂径定理可得 OI 垂直 AN,即可利用勾股定理分别求出 AI 和 IN,即可得出 AN 【详解】(1)DE/OB,BOC=EDC, CG/OE,DE

    35、O=BOE, 又DEO=EDC,DEO=BOE, 由题意得:EO=CO,BO=BO, BOEBOC(SAS), BEO=BCO=90 , AB 是O 的切线 (2) 如图所示 DG 与 OE 交点作为 H 点, EO/GC, EHD=DGC=90 , 又由(1)所知AEO=90 , AE/DF, AECDFC, AEDF ACDC , 由圆周角定理可知EDG=ECG,EOD=2ECD, DO/GC, EOD=GCD=GCE+ECD, ECD=GCE=EDF, 又FED=DEC, FEDDEC, DFEF DCED , AEEF ACED ,即AE EDAC EF (3) 1 3,tan 2 E

    36、FACE,与ACE 相等角的 tan 值都相同 ED=6,则 EC=12, 根据勾股定理可得 22 36 1446 5CDEDEC EO=DO=CO=3 5 由(2)可得 1 2 AEEF ACED , 在 Rt AEO 中,可得 222 AOAEEO ,即 2 22 ACOCAEEO, 22 2 23 53 5AEAE, 解得 AE=4 5,则 AC=8 5,AO=5 5 连接 ON,延长 BO 交 MN 于点 I,根据垂径定理可知 OIMN, AN/CE,CAN=ACE 在 Rt AIO 中,可得 222 AOAIIO ,即 2 2 2 5 52OIOI, 解得 OI=5,则 AI=10,

    37、 在 Rt OIN 中, 222 ONINIO ,即 2 22 3 55IN, 解得 IN=2 5 AN=AI+IN=10+2 5 【点睛】本题考查圆的综合知识及相似全等,关键在于根据条件结合知识点,特别是辅助线的做法要迎合题目 给出的条件 23.一大型商场经营某种品牌商品,该商品的进价为每件 3 元,根据市场调查发现,该商品每周的销售量 y (件)与售价 x(元件) (x 为正整数)之间满足一次函数关系,下表记录的是某三周的有关数据: x(元/件) 4 5 6 y(件) 10000 9500 9000 (1)求 y 与 x 的函数关系式(不求自变量的取值范围) ; (2)在销售过程中要求销售

    38、单价不低于成本价,且不高于 15 元/件若某一周该商品的销售量不少于 6000 件,求这一周该商场销售这种商品获得的最大利润和售价分别为多少元? (3)抗疫期间,该商场这种商品售价不大于 15 元/件时,每销售一件商品便向某慈善机构捐赠 m 元 (16m) ,捐赠后发现,该商场每周销售这种商品的利润仍随售价的增大而增大请直接写出 m 的取 值范围 【答案】 (1)50012000yx ; (2)这一周该商场销售这种商品获得的最大利润为 54000 元,售价为 12 元; (3)36m 【解析】 【分析】 (1)设 y 与 x 的函数关系式为 y=kx+b,代入表中的数据求解即可; (2)设这一

    39、周该商场销售这种商品获得的利润为 w,根据总利润=单件利润 销售量列出函数关系式求最大 值,注意 x 的取值范围; (3) 写出 w 关于 x 的函数关系式, 根据当 x15 时, 利润仍随售价的增大而增大, 可得 50027 15 2500 m , 求解即可 【详解】解: (1)设 y 与 x 的函数关系式为 y=kx+b, 代入(4,10000) , (5,9500)可得: 100004 95005 kb kb , 解得: 500 12000 k b , 即 y 与 x 的函数关系式为50012000yx ; (2)设这一周该商场销售这种商品获得的利润为 w, 根据题意可得: 315 50

    40、0120006000 x x , 解得:312x, 2 3 500120003 27 50055125 2 wy x xx x 312x, 当 x=12 时,w 有最大值,w=54000, 答:这一周该商场销售这种商品获得的最大利润为 54000 元,售价为 12 元 (3)设这一周该商场销售这种商品获得的利润为 w, 当每销售一件商品便向某慈善机构捐赠 m 元时, 2 3 500120003 50050027500 243 wy xm xxm xmxm 由题意,当 x15 时,利润仍随售价的增大而增大, 可得: 50027 15 2500 m ,解得:m3, 16m 36m 故 m 的取值范

    41、围为:36m 【点睛】本题考查二次函数的实际应用最大利润问题,解题的关键是根据题意列出函数关系式,通过 配方法找到最大值 24.如图, 抛物线 2 1 2 yxbxc与x轴交于A、 B两点 (点A在点B左边) , 与y轴交于点C 直线 1 2 2 yx 经过 B、C 两点 (1)求抛物线的解析式; (2) 点 P 是抛物线上一动点, 过点 P 且垂直于 x 轴的直线与直线BC及 x 轴分别交于点 D、 MPNBC, 垂足为 N设,0M m 点 P 在抛物线上运动,若 P、D、M 三点中恰有一点是其它两点所连线段的中点(三点重合除外) 请直 接写出符合条件的 m 的值; 当点 P 在直线BC下方

    42、的抛物线上运动时,是否存在一点 P,使PNC 与AOC相似若存在,求出 点 P 的坐标;若不存在,请说明理由 【答案】 (1) 2 13 2 22 yxx; (2)-2, 1 2 ,1; (3)存在, (3,-2) 【解析】 【分析】 (1) 根据直线 1 2 2 yx经过 B、 C 两点求出 B、 C 两点的坐标, 将 B、 C 坐标代入抛物线 2 1 2 yxbxc 可得答案; (2)由题意得 P(m, 2 13 2 22 mm) ,D(m, 1 2 2 m) ;根据 P、D、M 三点中恰有一点是其它两点 所连线段的中点列式计算即可求得 m 的值; 先证明CBOAOC, 得出ACO= AB

    43、C , 再根据PNC与AOC相似得出ACO= PCN, 则ABC= PCN,可得出AB/PC,求出点 P 的纵坐标,代入抛物线 2 13 2 22 yxx,即可求得点 P 的横坐标 【详解】解: (1)由直线 1 2 2 yx经过 B、C 两点得 B(4,0) ,C(0,-2) 将 B、C 坐标代入抛物线得 2 840 c bc ,解得 3 2 2 b c , 抛物线的解析式为: 2 13 2 22 yxx; (2)PNBC,垂足为 N ,0M m P(m, 2 13 2 22 mm) ,D(m, 1 2 2 m) , 分以下几种情况: M 是 PD 的中点时,MD=PM,即 0-( 1 2

    44、2 m)= 2 13 2 22 mm 解得 1 2m , 2 4m (舍去) ; P 是 MD 的中点时,MD=2MP,即 1 2 2 m=2( 2 13 2 22 mm) 解得 1 1 2 m , 2 4m (舍去) ; D 是 MP 的中点时,2MD=MP,即 2 13 2 22 mm=2( 1 2 2 m) 解得 1 1m , 2 4m (舍去) ; 符合条件的 m 的值有-2, 1 2 ,1; 抛物线的解析式为: 2 13 2 22 yxx, A(-1,0) ,B(4,0) ,C(0,-2) AO=1,CO=2,BO=4, AOCO = COBO ,又AOC= COB=90 , AOCCOB, ACO= ABC, PNC与AOC相似 ACO= PCN, ABC= PCN, AB/PC, 点 P 的纵坐标是-2,代入抛物线 2 13 2 22 yxx,得 2 3 2 2 1 2 2 xx 解得: 1 0 x (舍去) , 2 3x , 点 P 的坐标为: (3,-2) 【点睛】本题考查二次函数的综合题:熟练掌握二次函数图象上点的坐标特征、二次函数的性质和相似三 角形的判定和性质;会利用待定系数法求函数解析式;理解坐标与图形性质,记住两点间的距离公式;会 利用分类讨论的思想解决数学问题

    展开阅读全文
    提示  163文库所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
    关于本文
    本文标题:湖北省鄂州市2020年中考数学真题试题附答案.doc
    链接地址:https://www.163wenku.com/p-665803.html

    Copyright@ 2017-2037 Www.163WenKu.Com  网站版权所有  |  资源地图   
    IPC备案号:蜀ICP备2021032737号  | 川公网安备 51099002000191号


    侵权投诉QQ:3464097650  资料上传QQ:3464097650
       


    【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。

    163文库