书签 分享 收藏 举报 版权申诉 / 18
上传文档赚钱

类型22.3实际问题与二次函数(1)(九年级上册数学(人教版)).ppt

  • 上传人(卖家):四川天地人教育
  • 文档编号:664588
  • 上传时间:2020-07-29
  • 格式:PPT
  • 页数:18
  • 大小:967.50KB
  • 【下载声明】
    1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
    2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
    3. 本页资料《22.3实际问题与二次函数(1)(九年级上册数学(人教版)).ppt》由用户(四川天地人教育)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
    4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
    5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
    配套讲稿:

    如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。

    特殊限制:

    部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。

    关 键  词:
    九年级上册数学人教版 22.3实际问题与二次函数1 【九年级上册数学人教版】 22.3 实际问题 二次 函数 九年级 上册 数学 人教版 下载 _九年级上册_人教版(2024)_数学_初中
    资源描述:

    1、第22章 二次函数 人教版九年级上册 22.22.3 3实际问题与实际问题与二次函数二次函数(1 1) 会列出二次函数关系式,并解决几何图形的最大(小)值。 1、通过探究几何图形的长度和面积之间的关系, 列出函数关系式;并确定自变量的取值范围。 2、会用二次函数顶点公式求实际问题中的极值。 二、新课引入 1.二次函数y=a(x-h)+k的图象是一 条_,它的对称轴是 _,顶点坐标是 . 2.二次函数y=ax+bx+c的图象是一条_,它的对称轴 是_,顶点坐标是_. 3.二次函数y=2(x-3)+5的对称轴是 ,顶点坐标是 . 4.二次函数y=x-4x+9的对称轴是 ,顶点坐标是_. 抛物线 (

    2、h,k) 抛物线 (3,5) (2,5) 2 4 , 24 bacb aa 2 b x a x=h x=3 x=2 探究点一 构建二次函数模型,解决几何最值类应用题 0 6 从地面竖直向上抛出一小球,小球的高度 h(单位: m)与小球的运动时间 t(单位:s)之间的关系式是 h= 30t - 5t 2 (0t6)小球的运动时间是多少时,小 球最高?小球运动中的最大高度是多少? 小球运动的时间是 3 s 时,小球最高 小球运动中的最大高度是 45 m 30 3 225 b t a () , 22 430 45 445 acb h a () 0 6 结合问题,拓展一般 由于抛物线 y = ax 2

    3、 + bx + c 的顶点是最低(高)点, 当x=- 时,二次函数 y = ax 2 + bx + c 有最小(大) 值y= 如何求出二次函数 y = ax 2 + bx + c 的最小(大)值? 探究点一 构建二次函数模型,解决几何最值类应用题 2a b 4a 4ac-b2 探究1:用总长为60m的篱笆围成矩形场地,矩形面积S随矩形一边长l 的变化而变化.当l是多少时,场地的面积S最大,最大面积是多少? 探究点一 构建二次函数模型,解决几何最值类应用题 整理后得 s=-l2+30l 解: s=( -l )l, 当l =- =- =15 时, S 有最大值为 =225 当 l 是 15 m 时

    4、,场地的面积 S 最大 ,最大面积为225平方米 (0l30) 矩形场地的周长是 60m,一边长为l, 则另一边长为 m,场地的面 积:S=l(30-l)即S=- l2+30l自变量的取 值范围(0l30) 60 (l) 2 60 2 b 2a 30 2(-1) 4ac-b2 4a 探究点二:已知直角三角形两条直角边的和等于8,两条直角边 各为多少时,这个直角三角形的面积最大, 最大值是多少? 解:直角三角形两直角边之和为8,设一边长x 另一边长为 _ ,面积为s。 则该直角三角形面积: (0 x8)整理得: 当是 时,直角面积最大, 最大值为 . s=(8-x)x2 8-x 2 1 4 2

    5、sxx 变式1:如图,在一面靠墙的空地上用长为24米的篱笆, 围成中间隔有二道篱笆的长方形花圃,设花圃的宽AB为x米, 面积为S平方米。 (1)求S与x的函数关系式及自变量的取值范围; (2)当x取何值时所围成的花圃面积最大,最大值是多少? (3)若墙的最大可用长度为8米,则求围成花圃的最大面积。 A B C D 解: (1) AB为x米、篱笆长为24米 花圃宽为(244x)米 Sx(244x) 4x224 x (0x6) A B C D b 2a (2)当x- =3 时,S最大值 36(平方米) 4ac-b2 4a (3) 墙的可用长度为8米 当x4cm时,S最大值32 平方米 0244x

    6、8 4x6 A B C D 变式2:小明的家门前有一块空地,空地外有一面长10米 的围墙,为了充分利用空间,小明的爸爸准备靠墙修建一 个矩形养鸡场,他买回了32米长的篱笆准备作为养鸡 场的围栏,为了喂鸡方便,准备在养鸡场的中间再围出 一条宽为一米的通道及在左右养鸡场各放一个1米宽的门 (其它材料)。养鸡场的宽AD究竟应为多少米才能使养鸡 场的面积最大? B D A H E G F C 归纳探究,总结方法 2列出二次函数的解析式(根据几何图形的面积公式),并根据自变量 的实际意义,确定自变量的取值范围. 3在自变量的取值范围内,求出二次函数的最大 值或最小值.(实质求抛物线的顶点坐标) 4.作答。 1先设出未知数x y(亦可以用其他字母),一般边长设为x,面积设 为y。 1.如图虚线部分为围墙材料,其长度为20米,要使所围的矩形面积最大,长 和宽分别为: ( ) A.10米,10米 B.15米,15米 C.16米,4米 D.17米,3米 2.如图所示,一边靠墙(足够长),其他三边用12米长的篱笆围成一个矩形 (ABCD)花圃,则这个花圃的最大面积是_平方米。 第第1题题 A B C D 第第2题题 A 18 作业: 1.教科书第57页第7题 2.教科书第52页4、5、6、 7、9题

    展开阅读全文
    提示  163文库所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
    关于本文
    本文标题:22.3实际问题与二次函数(1)(九年级上册数学(人教版)).ppt
    链接地址:https://www.163wenku.com/p-664588.html
    四川天地人教育
         内容提供者      个人认证 实名认证

    Copyright@ 2017-2037 Www.163WenKu.Com  网站版权所有  |  资源地图   
    IPC备案号:蜀ICP备2021032737号  | 川公网安备 51099002000191号


    侵权投诉QQ:3464097650  资料上传QQ:3464097650
       


    【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。

    163文库