书签 分享 收藏 举报 版权申诉 / 33
上传文档赚钱

类型人教初中数学九上-《二次函数与一元二次方程(第1课时)》课件-(高效课堂)获奖-人教数学20222-.ppt

  • 上传人(卖家):ziliao2023
  • 文档编号:6644945
  • 上传时间:2023-07-25
  • 格式:PPT
  • 页数:33
  • 大小:1.34MB
  • 【下载声明】
    1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
    2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
    3. 本页资料《人教初中数学九上-《二次函数与一元二次方程(第1课时)》课件-(高效课堂)获奖-人教数学20222-.ppt》由用户(ziliao2023)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
    4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
    5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
    配套讲稿:

    如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。

    特殊限制:

    部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。

    关 键  词:
    二次函数与一元二次方程第1课时 初中 数学 二次 函数 一元 二次方程 课时 课件 高效 课堂 获奖 20222 下载 _九年级上册_人教版(2024)_数学_初中
    资源描述:

    1、222二次函数与一元二次方程二次函数与一元二次方程第第1课时二次函数与一元二次方程之间的关系课时二次函数与一元二次方程之间的关系横坐标两个无y0一个1一元二次方程ax2bxc0的实数根,就是二次函数yax2bxc,当_时,自变量x的值,它是二次函数的图象与x轴交点的_2抛物线yax2bxc与x轴交点个数与一元二次方程ax2bxc0根的判别式的关系:当b24ac0时,抛物线与x轴_交点;当b24ac0时,抛物线与x轴有_交点;当b24ac0时,抛物线与x轴有_交点9C知识点1:二次函数与一元二次方程1抛物线y3x2x2与坐标轴的交点个数是()A3B2C1 D02如图,已知抛物线与x轴的一个交点A

    2、(2,0),对称轴是x1,则该抛物线与x轴的另一个交点的坐标是()A(2,0)B(3,0)C(4,0)D(5,0)3抛物线yx26xm与x轴只有一个公共点,则m的值为_ _A50 x2.232.242.252.26ax2bxc0.06 0.02 0.030.09C 6用图象法求一元二次方程2x24x10的近似解解:设y2x24x1,画出图象(略)由图象知,当或x时,y0,即方程2x24x10的近似解为x1,x20.2 知识点3:二次函数与不等式7二次函数yx2x2的图象如图所示,则函数值y0时x的取值范围是()Ax1 Bx2C1x2 Dx1或x2C8如图是二次函数yax2bxc的部分图象,由图

    3、象可知不等式ax2bxc0的解集是()A1x5 Bx5Cx1且x5 Dx1或x59(2014南京)已知二次函数yax2bxc中,函数y与自变量x的部分对应值如表:则当y5时,x的取值范围是_x10123y105212D0 x4B C 10已知函数yx22x3,当xm时,y0,则m的值可能是()A4B0C2 D311根据下列表格中的对应值,判断方程ax2bxc0(a0,a,b,c为常数)的根的个数是()A.0 B1 C2 D1或2x5.175.185.195.20ax2bxc0.02 0.01 0.020.04C 12抛物线yax2bxc的图象如图,则关于x的方程ax2bxc20的情况是()A有

    4、两个不相等的实数根B有两个异号的实数根C有两个相等的实数根D没有实数根13抛物线y2(x3)(x2)与x轴的交点坐标分别为_(2,0),(3,0)14(1)用配方法把二次函数yx24x3化成y(xh)2k的形式;(2)在直角坐标系中画出yx24x3的图象;(3)若A(x1,y1),B(x2,y2)是函数yx24x3图象上的两点,且x1x21,请比较y1,y2的大小关系;(直接写结果)(4)把方程x24x32的根在函数yx24x3的图象上表示出来解:(1)y(x2)21(2)图象略(3)y1y2(4)该方程的根是二次函数图象在y2时对应点的横坐标 15二次函数yax2bxc(a0)的图象如图,根

    5、据图象解答下列问题:(1)写出方程ax2bxc0的两个根;(2)写出y随x的增大而减小的自变量x的取值范围;(3)若方程ax2bxck有两个不相等的实数根,求k的取值范围解:(1)x11,x23(2)x2(3)k2 16已知二次函数yx22mxm23(m是常数)(1)求证:不论m为何值,该函数的图象与x轴没有公共点;(2)把该函数的图象沿y轴向下平移多少个单位长度后,得到的函数的图象与x轴只有一个公共点?解:(1)a10,该函数的图象开口向上,又yx22mxm23(xm)233,该函数的图象在x轴的上方,不论m为何值,该函数的图象与x轴没有公共点(2)沿y轴向下平移3个单位长度 17已知抛物线

    6、yax2bxc(a0)的图象与x轴交于A(x1,0),B(x2,0)(x1x2)两点,与y轴交于点C,x1,x2是方程x24x50的两根(1)若抛物线的顶点为D,求SABC SACD的值;(2)若ADC90,求二次函数的解析式 轴对称轴对称引言引言对称现象无处不在,从自然景观到艺术作对称现象无处不在,从自然景观到艺术作品,从建筑物到交通标志,甚至日常生活用品,都可品,从建筑物到交通标志,甚至日常生活用品,都可以找到对称的例子,对称给我们带来美的感受!以找到对称的例子,对称给我们带来美的感受!引出新知引出新知探索新知探索新知问题问题1如图,把一张纸对折,剪出一个图案(折如图,把一张纸对折,剪出一

    7、个图案(折痕处不要完全剪断),再打开这张对折的纸,就得到了痕处不要完全剪断),再打开这张对折的纸,就得到了美丽的窗花观察得到的窗花,你能发现它们有什么共美丽的窗花观察得到的窗花,你能发现它们有什么共同的特点吗?同的特点吗?追问追问你能举出一些轴对称图形的例子吗?你能举出一些轴对称图形的例子吗?探索新知探索新知如果一个平面图形沿一条直线折叠,直线两旁的部如果一个平面图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形就叫做轴对称图形,这条直分能够互相重合,这个图形就叫做轴对称图形,这条直 线就是它的对称轴这时,我们也说这个图形关于这条线就是它的对称轴这时,我们也说这个图形关于这条 直线(成轴

    8、)对称直线(成轴)对称共同特征:共同特征:每一对图形沿着虚线折叠,左边的图形都能与右边每一对图形沿着虚线折叠,左边的图形都能与右边的图形重合的图形重合 探索新知探索新知问题问题2观察下面每对图形(如图),你能类比前观察下面每对图形(如图),你能类比前面的内容概括出它们的共同特征吗?面的内容概括出它们的共同特征吗?追问追问1你能再举出一些两个图形成轴对称的例子吗?你能再举出一些两个图形成轴对称的例子吗?探索新知探索新知把一个图形沿着某一条直线折叠,如果它能够与另把一个图形沿着某一条直线折叠,如果它能够与另一个图形重合,那么就说这两个图形关于这条直线(成一个图形重合,那么就说这两个图形关于这条直线

    9、(成轴)对称,这条直线叫做对称轴,折叠后重合的点是对轴)对称,这条直线叫做对称轴,折叠后重合的点是对应点,叫做对称点应点,叫做对称点 两者的区别:两者的区别:轴对称图形指的是一个图形沿对称轴折叠后这个图轴对称图形指的是一个图形沿对称轴折叠后这个图形的两部分能完全重合,而两个图形成轴对称指的是两形的两部分能完全重合,而两个图形成轴对称指的是两个图形之间的位置关系,这两个图形沿对称轴折叠后能个图形之间的位置关系,这两个图形沿对称轴折叠后能够重合够重合探索新知探索新知追问追问2你能结合具体的图形说明轴对称图形和两个你能结合具体的图形说明轴对称图形和两个 图形成轴对称有什么区别与联系吗图形成轴对称有什

    10、么区别与联系吗?两者的联系:两者的联系:把成轴对称的两个图形看成一个整体,它就是一个把成轴对称的两个图形看成一个整体,它就是一个轴对称图形把一个轴对称图形沿对称轴分成两个图轴对称图形把一个轴对称图形沿对称轴分成两个图形,这两个图形关于这条轴对称形,这两个图形关于这条轴对称 探索新知探索新知追问追问2你能结合具体的图形说明轴对称图形和两个你能结合具体的图形说明轴对称图形和两个 图形成轴对称有什么区别与联系吗图形成轴对称有什么区别与联系吗?追问追问1你能说明其中你能说明其中的道理吗?的道理吗?探索新知探索新知问题问题3如图,如图,ABC 和和ABC关于直线关于直线MN 对称,点对称,点A,B,C分

    11、别是点分别是点A,B,C 的对称点,线的对称点,线 段段AA,BB,CC与直线与直线MN 有什么关系?有什么关系?ABCMNPABC探索新知探索新知追问追问2上面的问题说明上面的问题说明“如果如果ABC 和和ABC关于直线关于直线MN 对称,那么,直线对称,那么,直线MN 垂直垂直线段线段AA,BB和和CC,并且直线,并且直线MN 还平分线段还平分线段AA,BB和和CC”如如果将其中的果将其中的“三角形三角形”改为改为“四边形四边形”“”“五边形五边形”其其他条件不变,上述结论还成他条件不变,上述结论还成立吗?立吗?ABCMNPABC经过线段中点并且垂直经过线段中点并且垂直于这条线段的直线,叫

    12、做这于这条线段的直线,叫做这条线段的垂直平分线条线段的垂直平分线 探索新知探索新知问题问题3如图,如图,ABC 和和ABC关于直线关于直线MN 对称,点对称,点A,B,C分别是点分别是点A,B,C 的对称点,线的对称点,线段段AA,BB,CC与直线与直线MN 有什么关系?有什么关系?ABCMNPABC探索新知探索新知追问追问3你能用数学语言概括前面的结论吗?你能用数学语言概括前面的结论吗?成轴对称的两个图形的性质:成轴对称的两个图形的性质:如果两个图形关于某条如果两个图形关于某条直线对称,那么对称轴是任直线对称,那么对称轴是任何一对对应点所连线段的垂何一对对应点所连线段的垂直平分线即对称点所连

    13、线直平分线即对称点所连线段被对称轴垂直平分;对称段被对称轴垂直平分;对称轴垂直平分对称点所连线段轴垂直平分对称点所连线段 ABCMNPABC结论:结论:直线直线l 垂直线段垂直线段AA,BB,直线直线l平分线段平分线段AA,BB(或直(或直线线l 是线段是线段AA,BB的垂直平分的垂直平分线)线)探索新知探索新知问题问题4下图是一个轴对称图形,你能发现什么结下图是一个轴对称图形,你能发现什么结 论?能说明理由吗?论?能说明理由吗?ABlAB追问你能用数学语言概括前面追问你能用数学语言概括前面的结论吗?的结论吗?探索新知探索新知问题问题4下图是一个轴对称图形,你能发现什么结下图是一个轴对称图形,

    14、你能发现什么结论?能说明理由吗?论?能说明理由吗?ABlAB轴对称图形的性质:轴对称图形的性质:轴对称图形的对称轴,是任何轴对称图形的对称轴,是任何一对对应点所连线段的垂直平分线一对对应点所连线段的垂直平分线 探索新知探索新知问题问题4下图是一个轴对称图形,你能发现什么结下图是一个轴对称图形,你能发现什么结 论?能说明理由吗?论?能说明理由吗?ABlAB课堂练习课堂练习练习练习1 1如图所示的每个图形是轴对称图形吗?如如图所示的每个图形是轴对称图形吗?如果是,指出它的对称轴果是,指出它的对称轴 课堂练习课堂练习练习练习2如图所示的每幅图形中的两个图案是轴对称如图所示的每幅图形中的两个图案是轴对称的吗?如果是,试着找出它们的对称轴,并找出一对对的吗?如果是,试着找出它们的对称轴,并找出一对对称点称点 (1)本节课学习了哪些主要内容?)本节课学习了哪些主要内容?(2)轴对称图形和两个图形成轴对称的区别与联系是)轴对称图形和两个图形成轴对称的区别与联系是 什么?什么?(3)成轴对称的两个图形有什么性质?轴对称图形有)成轴对称的两个图形有什么性质?轴对称图形有 什么性质?我们是怎么探究这些性质的?什么性质?我们是怎么探究这些性质的?课堂小结课堂小结教科书习题教科书习题13.1第第1、2、3、4、5题题 布置作业布置作业

    展开阅读全文
    提示  163文库所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
    关于本文
    本文标题:人教初中数学九上-《二次函数与一元二次方程(第1课时)》课件-(高效课堂)获奖-人教数学20222-.ppt
    链接地址:https://www.163wenku.com/p-6644945.html
    ziliao2023
         内容提供者      个人认证 实名认证

    Copyright@ 2017-2037 Www.163WenKu.Com  网站版权所有  |  资源地图   
    IPC备案号:蜀ICP备2021032737号  | 川公网安备 51099002000191号


    侵权投诉QQ:3464097650  资料上传QQ:3464097650
       


    【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。

    163文库