书签 分享 收藏 举报 版权申诉 / 36
上传文档赚钱

类型人教初中数学九上-22《二次函数》课件实际问题与二次函数-(高效课堂)获奖-人教数学20224-.ppt

  • 上传人(卖家):ziliao2023
  • 文档编号:6644942
  • 上传时间:2023-07-25
  • 格式:PPT
  • 页数:36
  • 大小:1.21MB
  • 【下载声明】
    1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
    2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
    3. 本页资料《人教初中数学九上-22《二次函数》课件实际问题与二次函数-(高效课堂)获奖-人教数学20224-.ppt》由用户(ziliao2023)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
    4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
    5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
    配套讲稿:

    如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。

    特殊限制:

    部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。

    关 键  词:
    二次函数 初中 数学 22 二次 函数 课件 实际问题 高效 课堂 获奖 20224 下载 _九年级上册_人教版(2024)_数学_初中
    资源描述:

    1、y0 x51015202530123457891o-16 (1)(1)请用长请用长2020米的篱笆设计一个矩形的菜园。米的篱笆设计一个矩形的菜园。(2)(2)怎样设计才能使矩形菜园的面积最大?怎样设计才能使矩形菜园的面积最大?ABCDxy(0 x10)(1)(1)求求y y与与x x的函数关系式的函数关系式及自变量的取值范围;及自变量的取值范围;(2)(2)怎样围才能使菜园的面积最大?怎样围才能使菜园的面积最大?最大面积是多少?最大面积是多少?如图,用长如图,用长2020米的篱笆围成一个一面靠墙米的篱笆围成一个一面靠墙的长方形的菜园,设菜园的宽为的长方形的菜园,设菜园的宽为x x米,面米,面

    2、积为积为y y平方米。平方米。ABCD范例范例例例1、如图,在一面靠墙的空地上用长、如图,在一面靠墙的空地上用长为为24 m的篱笆,围成中间隔有两道篱笆的篱笆,围成中间隔有两道篱笆的长方形花圃。设花圃的宽的长方形花圃。设花圃的宽AB为为x m,面积为面积为S m2。(1)求求S与与x的函数关系式及自变量的取的函数关系式及自变量的取值范围;值范围;ABCD范例范例例例1、如图,在一面靠墙的空地上用长、如图,在一面靠墙的空地上用长为为24m的篱笆,围成中间隔有两道篱笆的篱笆,围成中间隔有两道篱笆的长方形花圃。设花圃的宽的长方形花圃。设花圃的宽AB为为xm,面积为面积为Sm2。(2)当当x取何值时,

    3、所围成花圃的面积最取何值时,所围成花圃的面积最大?最大值是多少?大?最大值是多少?ABCD范例范例例例1、如图,在一面靠墙的空地上用长、如图,在一面靠墙的空地上用长为为24m的篱笆,围成中间隔有两道篱笆的篱笆,围成中间隔有两道篱笆的长方形花圃。设花圃的宽的长方形花圃。设花圃的宽AB为为xm,面积为面积为Sm2。(3)若墙的最大可用长度为若墙的最大可用长度为8m,求围成,求围成的花圃的最大面积。的花圃的最大面积。ABCD何时窗户通过的光线最多w某建筑物的窗户如图所示某建筑物的窗户如图所示,它的上半部是半它的上半部是半圆圆,下半部是矩形下半部是矩形,制造窗框的材料总长制造窗框的材料总长(图中图中所

    4、有的黑线的长度和所有的黑线的长度和)为为15m.15m.当当x x等于多少时等于多少时,窗户通过的光线最多窗户通过的光线最多(结果精确到结果精确到0.01m)?0.01m)?此此时时,窗户的面积是多少窗户的面积是多少?xxy.1574.1:xxy由解.4715,xxy得xx215272 24715222.222xxxxxxyS窗户面积.02.45622544,07.114152:2abacyabx最大值时当或用公式.562251415272x1.1.某工厂为了存放材料,需要围一个周长某工厂为了存放材料,需要围一个周长160160米的米的矩形场地,问矩形的长和宽各取多少米,才能使矩形场地,问矩形

    5、的长和宽各取多少米,才能使存放场地的面积最大。存放场地的面积最大。2.2.窗的形状是矩形上面加一个半圆。窗的周长等窗的形状是矩形上面加一个半圆。窗的周长等于于6cm6cm,要使窗能透过最多的光线,它的尺寸应,要使窗能透过最多的光线,它的尺寸应该如何设计?该如何设计?(计算麻烦计算麻烦)BCDAO3.3.用一块宽为的长方形铁板弯起两边做用一块宽为的长方形铁板弯起两边做一个水槽,水槽的横断面为底角一个水槽,水槽的横断面为底角120120的等腰梯形。要使水槽的横断面积最的等腰梯形。要使水槽的横断面积最大,它的侧面大,它的侧面ABAB应该是多长?应该是多长?AD120BC巩固巩固2、如图,正方形、如图

    6、,正方形ABCD的边长是的边长是4,E是是AB上一点,上一点,F是是AD延长线上一点,延长线上一点,BE=DF。四边形。四边形AEGF是矩形,则矩是矩形,则矩形形AEGF的面积的面积y随随BE的长的长x的变化而的变化而变化,变化,y与与x之间可之间可以用怎样的函数来以用怎样的函数来表示?表示?DABCEGF巩固巩固4、如图是一块三角形废料,、如图是一块三角形废料,A=30,C=90,AB=12。用这块废料剪出一。用这块废料剪出一个长方形个长方形CDEF,其中,点,其中,点D、E、F分分别在别在AC、AB、BC上。要使剪出的长方上。要使剪出的长方形形CDEF的面积最大,点的面积最大,点E应选在何

    7、处?应选在何处?BAFCDE范例范例例例2、如图,在矩形、如图,在矩形ABCD中,中,AB=6cm,BC=12cm,点,点P从从A开始向开始向B以以1cm/s的的速度移动,点速度移动,点Q从从B开始向开始向C以以2cm/s的的速度移动。如果速度移动。如果P、Q分别从分别从A、B同时同时出发,设出发,设PBQ的面积为的面积为S(cm2),移动时间为,移动时间为t(s)。(1)求求S与与t的函数关系;的函数关系;ABCDPQ范例范例例例2、如图,在矩形、如图,在矩形ABCD中,中,AB=6cm,BC=12cm,点,点P从从A开始向开始向B以以1cm/s的的速度移动,点速度移动,点Q从从B开始向开始

    8、向C以以2cm/s的的速度移动。如果速度移动。如果P、Q分别从分别从A、B同时同时出发,设出发,设PBQ的面积为的面积为S(cm2),移动时间为,移动时间为t(s)。(2)当移动时间为多少时,当移动时间为多少时,PBQ的面积最大?是的面积最大?是多少?多少?ABCDPQ巩固巩固3、如图,、如图,ABC中,中,B=90,AB=6cm,BC=12cm,点,点P从从A开始沿开始沿AB边边向向B以以1cm/s的速度移动;点的速度移动;点Q从从B开始开始沿沿BC边向边向C以以2cm/s的速度移动。如果的速度移动。如果P、Q同时出发,问经过几秒钟同时出发,问经过几秒钟,PQB的面积最大?最大面积的面积最大

    9、?最大面积是多少?是多少?BPQAC5.5.在矩形在矩形ABCDABCD中,中,ABAB6cm6cm,BCBC12cm12cm,点,点P P从点从点A A出发,沿出发,沿ABAB边向点边向点B B以以1cm/1cm/秒的速度移动,同时,秒的速度移动,同时,点点Q Q从点从点B B出发沿出发沿BCBC边向点边向点C C以以2cm/2cm/秒的速度移动。秒的速度移动。如果如果P P、Q Q两点在分别到达两点在分别到达B B、C C两点后就停止移动,两点后就停止移动,回答下列问题:回答下列问题:(1 1)运动开始后第几秒时,)运动开始后第几秒时,PBQPBQ的面积等于的面积等于8cm8cm2 2(2

    10、 2)设运动开始后第)设运动开始后第t t秒时,秒时,五边形五边形APQCDAPQCD的面积为的面积为ScmScm2 2,写出写出S S与与t t的函数关系式,的函数关系式,并指出自变量并指出自变量t t的取值范围;的取值范围;t t为何值时为何值时S S最小?求出最小?求出S S的最小值。的最小值。QPCBAD7.二次函数二次函数y=ax +bx+c的图象的一部分如图所示,的图象的一部分如图所示,已知它的顶点已知它的顶点M在第二象限,且经过点在第二象限,且经过点A(1,0)和)和点点B(0,1)。)。(04杭州)杭州)(1)请判断实数)请判断实数a的取值范围,并说明理由;的取值范围,并说明理

    11、由;2xy1B1AO54(2)设此二次函数的图象)设此二次函数的图象与与x轴的另一个交点为轴的另一个交点为C,当当AMC的面积为的面积为ABC的的 倍时,求倍时,求a的值。的值。-1a06.如图,在平面直角坐标系中,四边形如图,在平面直角坐标系中,四边形OABC为菱为菱形,点形,点C的坐标为的坐标为(4,0),AOC=60,垂直于,垂直于x轴轴的直线的直线l从从y轴出发,沿轴出发,沿x轴正方向以每秒轴正方向以每秒1个单位长个单位长度的速度运动,设直线度的速度运动,设直线l与菱形与菱形OABC的两边分别交的两边分别交于点于点M、N(点点M在点在点N的上方的上方).(1)求求A、B两点的坐标;两点

    12、的坐标;(2)设设OMN的面积为的面积为S,直线,直线l运动时间为运动时间为t秒秒(0t6),试求,试求S 与与t的函数表达式;的函数表达式;(3)在题在题(2)的条件下,的条件下,t为何值时,为何值时,S的面积最大?的面积最大?最大面积是多少?最大面积是多少?1.理解问题理解问题;“二次函数应用”的思路 w回顾上一节回顾上一节“最大利润最大利润”和本节和本节“最大面积最大面积”解解决问题的过程,你能总结一下解决此类问题的决问题的过程,你能总结一下解决此类问题的基本基本思路思路吗?与同伴交流吗?与同伴交流.议一议议一议2.分析问题中的变量和常量分析问题中的变量和常量,以及它们之间的关系以及它们

    13、之间的关系;3.用数学的方式表示出它们之间的关系用数学的方式表示出它们之间的关系;4.做数学求解做数学求解;5.检验结果的合理性检验结果的合理性,拓展等拓展等.轴对称轴对称引言引言对称现象无处不在,从自然景观到艺术作对称现象无处不在,从自然景观到艺术作品,从建筑物到交通标志,甚至日常生活用品,都可品,从建筑物到交通标志,甚至日常生活用品,都可以找到对称的例子,对称给我们带来美的感受!以找到对称的例子,对称给我们带来美的感受!引出新知引出新知探索新知探索新知问题问题1如图,把一张纸对折,剪出一个图案(折如图,把一张纸对折,剪出一个图案(折痕处不要完全剪断),再打开这张对折的纸,就得到了痕处不要完

    14、全剪断),再打开这张对折的纸,就得到了美丽的窗花观察得到的窗花,你能发现它们有什么共美丽的窗花观察得到的窗花,你能发现它们有什么共同的特点吗?同的特点吗?追问追问你能举出一些轴对称图形的例子吗?你能举出一些轴对称图形的例子吗?探索新知探索新知如果一个平面图形沿一条直线折叠,直线两旁的部如果一个平面图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形就叫做轴对称图形,这条直分能够互相重合,这个图形就叫做轴对称图形,这条直 线就是它的对称轴这时,我们也说这个图形关于这条线就是它的对称轴这时,我们也说这个图形关于这条 直线(成轴)对称直线(成轴)对称共同特征:共同特征:每一对图形沿着虚线折叠,左

    15、边的图形都能与右边每一对图形沿着虚线折叠,左边的图形都能与右边的图形重合的图形重合 探索新知探索新知问题问题2观察下面每对图形(如图),你能类比前观察下面每对图形(如图),你能类比前面的内容概括出它们的共同特征吗?面的内容概括出它们的共同特征吗?追问追问1你能再举出一些两个图形成轴对称的例子吗?你能再举出一些两个图形成轴对称的例子吗?探索新知探索新知把一个图形沿着某一条直线折叠,如果它能够与另把一个图形沿着某一条直线折叠,如果它能够与另一个图形重合,那么就说这两个图形关于这条直线(成一个图形重合,那么就说这两个图形关于这条直线(成轴)对称,这条直线叫做对称轴,折叠后重合的点是对轴)对称,这条直

    16、线叫做对称轴,折叠后重合的点是对应点,叫做对称点应点,叫做对称点 两者的区别:两者的区别:轴对称图形指的是一个图形沿对称轴折叠后这个图轴对称图形指的是一个图形沿对称轴折叠后这个图形的两部分能完全重合,而两个图形成轴对称指的是两形的两部分能完全重合,而两个图形成轴对称指的是两个图形之间的位置关系,这两个图形沿对称轴折叠后能个图形之间的位置关系,这两个图形沿对称轴折叠后能够重合够重合探索新知探索新知追问追问2你能结合具体的图形说明轴对称图形和两个你能结合具体的图形说明轴对称图形和两个 图形成轴对称有什么区别与联系吗图形成轴对称有什么区别与联系吗?两者的联系:两者的联系:把成轴对称的两个图形看成一个

    17、整体,它就是一个把成轴对称的两个图形看成一个整体,它就是一个轴对称图形把一个轴对称图形沿对称轴分成两个图轴对称图形把一个轴对称图形沿对称轴分成两个图形,这两个图形关于这条轴对称形,这两个图形关于这条轴对称 探索新知探索新知追问追问2你能结合具体的图形说明轴对称图形和两个你能结合具体的图形说明轴对称图形和两个 图形成轴对称有什么区别与联系吗图形成轴对称有什么区别与联系吗?追问追问1你能说明其中你能说明其中的道理吗?的道理吗?探索新知探索新知问题问题3如图,如图,ABC 和和ABC关于直线关于直线MN 对称,点对称,点A,B,C分别是点分别是点A,B,C 的对称点,线的对称点,线 段段AA,BB,

    18、CC与直线与直线MN 有什么关系?有什么关系?ABCMNPABC探索新知探索新知追问追问2上面的问题说明上面的问题说明“如果如果ABC 和和ABC关于直线关于直线MN 对称,那么,直线对称,那么,直线MN 垂直垂直线段线段AA,BB和和CC,并且直线,并且直线MN 还平分线段还平分线段AA,BB和和CC”如如果将其中的果将其中的“三角形三角形”改为改为“四边形四边形”“”“五边形五边形”其其他条件不变,上述结论还成他条件不变,上述结论还成立吗?立吗?ABCMNPABC经过线段中点并且垂直经过线段中点并且垂直于这条线段的直线,叫做这于这条线段的直线,叫做这条线段的垂直平分线条线段的垂直平分线 探

    19、索新知探索新知问题问题3如图,如图,ABC 和和ABC关于直线关于直线MN 对称,点对称,点A,B,C分别是点分别是点A,B,C 的对称点,线的对称点,线段段AA,BB,CC与直线与直线MN 有什么关系?有什么关系?ABCMNPABC探索新知探索新知追问追问3你能用数学语言概括前面的结论吗?你能用数学语言概括前面的结论吗?成轴对称的两个图形的性质:成轴对称的两个图形的性质:如果两个图形关于某条如果两个图形关于某条直线对称,那么对称轴是任直线对称,那么对称轴是任何一对对应点所连线段的垂何一对对应点所连线段的垂直平分线即对称点所连线直平分线即对称点所连线段被对称轴垂直平分;对称段被对称轴垂直平分;

    20、对称轴垂直平分对称点所连线段轴垂直平分对称点所连线段 ABCMNPABC结论:结论:直线直线l 垂直线段垂直线段AA,BB,直线直线l平分线段平分线段AA,BB(或直(或直线线l 是线段是线段AA,BB的垂直平分的垂直平分线)线)探索新知探索新知问题问题4下图是一个轴对称图形,你能发现什么结下图是一个轴对称图形,你能发现什么结 论?能说明理由吗?论?能说明理由吗?ABlAB追问你能用数学语言概括前面追问你能用数学语言概括前面的结论吗?的结论吗?探索新知探索新知问题问题4下图是一个轴对称图形,你能发现什么结下图是一个轴对称图形,你能发现什么结论?能说明理由吗?论?能说明理由吗?ABlAB轴对称图

    21、形的性质:轴对称图形的性质:轴对称图形的对称轴,是任何轴对称图形的对称轴,是任何一对对应点所连线段的垂直平分线一对对应点所连线段的垂直平分线 探索新知探索新知问题问题4下图是一个轴对称图形,你能发现什么结下图是一个轴对称图形,你能发现什么结 论?能说明理由吗?论?能说明理由吗?ABlAB课堂练习课堂练习练习练习1 1如图所示的每个图形是轴对称图形吗?如如图所示的每个图形是轴对称图形吗?如果是,指出它的对称轴果是,指出它的对称轴 课堂练习课堂练习练习练习2如图所示的每幅图形中的两个图案是轴对称如图所示的每幅图形中的两个图案是轴对称的吗?如果是,试着找出它们的对称轴,并找出一对对的吗?如果是,试着找出它们的对称轴,并找出一对对称点称点 (1)本节课学习了哪些主要内容?)本节课学习了哪些主要内容?(2)轴对称图形和两个图形成轴对称的区别与联系是)轴对称图形和两个图形成轴对称的区别与联系是 什么?什么?(3)成轴对称的两个图形有什么性质?轴对称图形有)成轴对称的两个图形有什么性质?轴对称图形有 什么性质?我们是怎么探究这些性质的?什么性质?我们是怎么探究这些性质的?课堂小结课堂小结教科书习题教科书习题13.1第第1、2、3、4、5题题 布置作业布置作业

    展开阅读全文
    提示  163文库所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
    关于本文
    本文标题:人教初中数学九上-22《二次函数》课件实际问题与二次函数-(高效课堂)获奖-人教数学20224-.ppt
    链接地址:https://www.163wenku.com/p-6644942.html

    Copyright@ 2017-2037 Www.163WenKu.Com  网站版权所有  |  资源地图   
    IPC备案号:蜀ICP备2021032737号  | 川公网安备 51099002000191号


    侵权投诉QQ:3464097650  资料上传QQ:3464097650
       


    【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。

    163文库