八年级数学下册总复习-沪科版课件.ppt
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《八年级数学下册总复习-沪科版课件.ppt》由用户(ziliao2023)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 八年 级数 下册 复习 沪科版 课件 下载 _八年级下册_沪科版(2024)_数学_初中
- 资源描述:
-
1、(一)(一)、二次根式、二次根式概念及意义概念及意义.像像 、这样表示这样表示 的的 _,且,且根号内含有字母的代数式叫做二次根式。根号内含有字母的代数式叫做二次根式。一一个数的个数的_也叫做二次根式。也叫做二次根式。224a 3b算术平方根算术平方根算术平方根算术平方根注意:注意:被开方数大于或等于零被开方数大于或等于零3如判断下列各式哪些是二次根式?判断下列各式哪些是二次根式?a6372x22ba 12 x题型题型1:确定二次根式中被开方数所含字母的取值范围确定二次根式中被开方数所含字母的取值范围.1.1.当当 _时,时,有意义。有意义。xx32.2.若若 +a4 3.3.求下列二次根式中
2、字母的取值范围求下列二次根式中字母的取值范围x x3 31 15 5x x解得解得 -5x-5x3 3解:解:0 0 x x-3 30 05 5x x说明:二次根式被开方数说明:二次根式被开方数不小于不小于0,所以求二次根,所以求二次根式中字母的取值范围常转式中字母的取值范围常转化为不等式(组)化为不等式(组)33a=4a=44a有意义的条件是有意义的条件是 .题型题型2:二次根式的非负性的应用二次根式的非负性的应用.4.4.已知:已知:+=0,+=0,求求 x-y x-y 的值的值.yx24x5.5.已知已知x,yx,y为实数为实数,且且 +3(y-2)+3(y-2)2 2=0,=0,则则x
3、-yx-y的值为的值为()A.3 A.3 B.-3 B.-3 C.1 D.-1C.1 D.-11x解:由题意,得解:由题意,得 x-4=0 x-4=0 且且 2x+y=02x+y=0解得解得 x=4,y=-8x=4,y=-8x-y=4-(-8)=4+8=12x-y=4-(-8)=4+8=12D D的取值范围是,则)(若aaa22.622a(二)、二次根式的性质:二)、二次根式的性质:0 0)(a a a a)a a1 1.(2 20 0)b b 0 0(a a b ba aa ab b3 3.0 0a a a a 0 0a a 0 0 0 0a a a a a aa a2 2.2 2)()()
4、(0 0)b b 0 0(a a b ba a b ba a4 4.(二)二次根式的简单性质二)二次根式的简单性质 练习:计算练习:计算2)(aa)0(a(二)二次根式的简单性质二)二次根式的简单性质 2a|a)0(aaa)0(a练习:计算练习:计算2)4()1(9)2(2)3()3(44,2)4(2xxx则积的算术平方根积的算术平方根 积的算术平方根,等于积中各积的算术平方根,等于积中各因式的算术平方根的积(因式的算术平方根的积(a a、b b都是都是非负数)。非负数)。(二)二次根式的简单性质二)二次根式的简单性质 baba)0,0(ba商的算术平方根商的算术平方根 商的算术平方根等于被除
5、式的算商的算术平方根等于被除式的算术平方根除以除式的算术平方根术平方根除以除式的算术平方根(二)二次根式的简单性质二)二次根式的简单性质 baba)0,0(ba18321、8125.02、25813、BA(1)下列各式不是二次根式的是下列各式不是二次根式的是()5A 3B 2Ca12D 21xx二次根式有意义,则 的取值范围是(3)选择:下列计算正确的是()266A 239B 120060C 21616D 10A 155105计算的值是()5B 5 10C102D1x 10A 24B 72C23D 4 下列各式化简后与 2的被开方数相同的是()CC 把被开方数的积作为积的被开方数把被开方数的积
6、作为积的被开方数 ba ba)0,0(ba(三)二次根式的乘法(三)二次根式的乘法(三)二次根式的除法(三)二次根式的除法 把被开方数的商作为商的被开方数把被开方数的商作为商的被开方数 baba)0,0(ba练习:计算练习:计算313621236483 32727 22(四)二次根式的运算四)二次根式的运算 22625(3)4831221010)20208080(2 21 122 2)2 23 3)(2 2(221323.1)()(化简:441.222aaa)(3 3、实数在数轴上的位置如图示,、实数在数轴上的位置如图示,化简化简|a-1|+|a-1|+2)2(a 。12 12 0 06 6x
7、 x3 32 26.6.若方程若方程 ,则,则 x_x_221 5.5.若数轴上表示数若数轴上表示数x x的点在原点的左边,的点在原点的左边,则化简则化简|3x+x|3x+x2 2|的结果是(的结果是()A.-4x B.4x C.-2x D.2xA.-4x B.4x C.-2x D.2xC C7.7.一个台阶如图,阶梯每一层高一个台阶如图,阶梯每一层高15cm15cm,宽,宽25cm25cm,长,长60cm.60cm.一只蚂蚁从一只蚂蚁从A A点爬到点爬到B B点最短路程是多少?点最短路程是多少?251515256060AB解:解:B151525256060A228060AB10000100A
8、 AB BP PD DC C若点若点P P为线段为线段CDCD上动点上动点。,10已知已知ABP的一边的一边AB=(2 2)如图所示,)如图所示,ADDCADDC于于D D,BCCDBCCD于于C C,则则AD=_ BC=_AD=_ BC=_1 12 2(1 1)在如图所示的)在如图所示的4 44 4的方格中画出格点的方格中画出格点ABPABP,使,使 三角形的三边为三角形的三边为 ,10,5,5拓展拓展1 1A AB BP PD DC C若点若点P P为线段为线段CDCD上动点上动点。,10已知已知ABP的一边的一边AB=(2 2)如图所示,)如图所示,ADDCADDC于于D D,BCCDB
9、CCD于于C C,则则AD=_ BC=_AD=_ BC=_1 12 2(1 1)在如图所示的)在如图所示的4 44 4的方格中画出格点的方格中画出格点ABPABP,使,使 三角形的三边为三角形的三边为 ,10,5,5拓展拓展1 1A AB BP PD DC C若点若点P P为线段为线段CDCD上动点上动点。,10已知已知ABP的一边的一边AB=(2 2)如图所示,)如图所示,ADDCADDC于于D D,BCCDBCCD于于C C,则则AD=_ BC=_AD=_ BC=_1 12 2(1 1)在如图所示的)在如图所示的4 44 4的方格中画出格点的方格中画出格点ABPABP,使,使 三角形的三边
10、为三角形的三边为 ,10,5,5拓展拓展1 1A AB BP PD DC C若点若点P P为线段为线段CDCD上动点上动点。,10已知已知ABP的一边的一边AB=(2 2)如图所示,)如图所示,ADDCADDC于于D D,BCCDBCCD于于C C,则则AD=_ BC=_AD=_ BC=_1 12 2(1 1)在如图所示的)在如图所示的4 44 4的方格中画出格点的方格中画出格点ABPABP,使,使 三角形的三边为三角形的三边为 ,10,5,5拓展拓展1 1A AB BP PD DC C若点若点P P为线段为线段CDCD上动点上动点。,10已知已知ABP的一边的一边AB=(2 2)如图所示,)
11、如图所示,ADDCADDC于于D D,BCCDBCCD于于C C,则则AD=_ BC=_AD=_ BC=_1 12 2(1 1)在如图所示的)在如图所示的4 44 4的方格中画出格点的方格中画出格点ABPABP,使,使 三角形的三边为三角形的三边为 ,10,5,5拓展拓展1 1A AB BP PD DC C若点若点P P为线段为线段CDCD上动点上动点。,10已知已知ABP的一边的一边AB=(2 2)如图所示,)如图所示,ADDCADDC于于D D,BCCDBCCD于于C C,则则AD=_ BC=_AD=_ BC=_1 12 2(1 1)在如图所示的)在如图所示的4 44 4的方格中画出格点的
12、方格中画出格点ABPABP,使,使 三角形的三边为三角形的三边为 ,10,5,5拓展拓展1 1A AB BP PD DC C若点若点P P为线段为线段CDCD上动点上动点。,10已知已知ABP的一边的一边AB=(2 2)如图所示,)如图所示,ADDCADDC于于D D,BCCDBCCD于于C C,则则AD=_ BC=_AD=_ BC=_1 12 2(1 1)在如图所示的)在如图所示的4 44 4的方格中画出格点的方格中画出格点ABPABP,使,使 三角形的三边为三角形的三边为 ,10,5,5拓展拓展2 2 设设DP=a,DP=a,请用含请用含a a的代数式表的代数式表示示APAP,BPBP。则
13、则AP=_AP=_,BP=_BP=_。24a 2(3)1a 当当a=1 a=1 时,时,则则PA+PB=_,PA+PB=_,2 5113当当a=3,a=3,则则PA+PB=_PA+PB=_ PA+PBPA+PB是否存在一个最小值?是否存在一个最小值?本章知识网络 概念:-一般形式:ax2+bx+c=0(a0)直接开平方法:x2=p(p0)(mx+n)2=p(p0)解法 配方法 一 公式法:因式分解法:(ax+b)(cx+d)=0 元 判别式:b2-4ac=0 判别式 不解方程,判别方程根的情况,二 用处 求方程中待定常数的值或取值范围,进行有关的证明,次 关系:x1+x2=-b/a x1.x2
14、=c/a 已知方程的一个根,求另一个根及字母的值,方 根与系数的关系 求与方程的根有关的代数式的值,用处 求作一元二次方程,程 已知两数的和与积,求此两数 判断方程两根的特殊关系,实际问题与一元二次方程:审,设,列.解,验,答,1.一元二次方程的概念一元二次方程的概念 只含有一只含有一个个未知未知数数,并并且未知且未知数数的最高次的最高次数数是是2 2的整的整式方程叫做一元二次方程。式方程叫做一元二次方程。2 2、一元二次方程的一般形式、一元二次方程的一般形式 20axbx c 20axbxc 1.直接开平方法 对于形如ax2=p(p0)或(mx+n)2=p(po)的方程可以用直接开平方法解2
15、.配方法用配方法解一元二次方程的步骤:w1.化1:把二次项系数化为1(方程两边都除以二次项系数);w2.移项:把常数项移到方程的右边;w3.配方:方程两边都加上一次项系数绝对值一半的平方;w4.变形:方程左分解因式,右边合并同类;w5.开方:根据平方根意义,方程两边开平方;w6.求解:解一元一次方程;w7.定解:写出原方程的解.w我们通过配成完全平方式的方法,得到了一元二次方程的根,这种解一元二次方程的方法称为配方法3.公式法w 一般地,对于一元二次方程 ax2+bx+c=0(a0).04.2422acbaacbbxw上面这个式子称为一元二次方程的求根公式.w用求根公式解一元二次方程的方法称为
16、公式法(:,042它的根是时当 acbw老师提示:w用公式法解一元二次方程的前提是:w1.必需是一般形式的一元二次方程:ax2+bx+c=0(a0).w2.b2-4ac0.公式法是这样生产的w 你能用配方法解方程 ax2+bx+c=0(a0)吗?心动 不如行动.0:2acxabx解.2422aacbabx.22222acababxabx.442222aacbabx.04.2422acbaacbbx.2acxabxw1.化1:把二次项系数化为1;w3.配方:方程两边都加上一次项系数绝对值一半的平方;w4.变形:方程左分解因式,右边合并同类;w5.开方:根据平方根意义,方程两边开平方;w6.求解:
17、解一元一次方程;w7.定解:写出原方程的解.w2.移项:把常数项移到方程的右边;,042时当 acb4.分解因式法w 当一元二次方程的一边是0,而另一边易于分解成两个一次因式的乘积时,我们就可以用分解因式的方法求解.这种用分解因式解一元二次方程的方法称为分解因式法.w老师提示:w1.用分解因式法的条件是:方程左边易于分解,而右边等于零;w2.关键是熟练掌握因式分解的知识;w3.理论依旧是“如果两个因式的积等于零,那么至少有一个因式等于零.”ax2+c=0 =ax2+bx=0 =ax2+bx+c=0 =因式分解法因式分解法公式法(配方法)公式法(配方法)2 2、公式法虽然是万能的,对任何一元二次
18、方程都适用,、公式法虽然是万能的,对任何一元二次方程都适用,但不一定但不一定 是最简单的,因此在解方程时我们首先考是最简单的,因此在解方程时我们首先考虑能否应用虑能否应用“直接开平方法直接开平方法”、“因式分解法因式分解法”等简单等简单方法,若不行,再考虑公式法(适当也可考虑配方法)方法,若不行,再考虑公式法(适当也可考虑配方法)3 3、方程中有括号时,应先用整体思想考虑有没有简单方、方程中有括号时,应先用整体思想考虑有没有简单方法,若看不出合适的方法时,则把它去括号并整理为一般法,若看不出合适的方法时,则把它去括号并整理为一般形式再选取合理的方法。形式再选取合理的方法。1 1、直接开平方法直
19、接开平方法因式分解法因式分解法w 我们知道:代数式b2-4ac对于方程的根起着关键的作用.一元二次方程的根的判别式.2422,1aacbbx有两个不相等的实数根方程时当00,0422acbxaxacb:00,0422有两个相等的实数根方程时当acbxaxacb.22,1abx没有实数根方程时当00,0422acbxaxacb.4.004222acbacbxaxacb即来表示用根的判别式的叫做方程我们把代数式若方程有若方程有两个两个 不相等的不相等的实数实数根根,则则b2-4ac0 回顾与反思判判别别式逆定理式逆定理若方程有若方程有两个两个 相等的相等的实数实数根根,则则b2-4ac=0若方程若
20、方程没没有有实数实数根根,则则b2-4ac0若方程有若方程有两个两个 实数实数根根,则则b2-4ac0判别式的用处 1.不解方程.判别方程根的情况,2.根据方程根的情况,确定方程中待定常数的值或取值范围,3.进行有关的证明,一元二次方程根一元二次方程根与与系系数数的的关关系系设设x1,x2是一元二次方程是一元二次方程ax2+bx+c=0(a0)的的两个两个根根,则则有有x1+x2=,x1x2=.abac解应用题 列方程解应用题的一般步骤是:1.审:审清题意:已知什么,求什么?已,未知之间有什么关系?2.设:设未知数,语句要完整,有单位(同一)的要注明单位;3.列:列代数式,列方程;4.解:解所
21、列的方程;5.验:是否是所列方程的根;是否符合题意;6.答:答案也必需是完事的语句,注明单位且要贴近生活.列方程解应用题的关键是:找出相等关系.回顾与复习1.数字与方程 例1.一个两位数,它的十位数字比个位数字小3,而它的个位数字的平方恰好等于这个两位数.求这个两位数.得根据题意为设这两位数的个位数字解,:x.3102xxx.030112xx整理得.6,521xx解得.3363,2353xx或.36,25:或这个两位数为答数字与方程例2.有一个两位数,它的十位数字与个位数字的和是5.把这个两位数的十位数字与个位数字互换后得到另一个两位数,两个两位数的积为763.求原来的两位数.得根据题意字为设
22、这个两位数的个位数解,:x.736510510 xxxx.0652xx整理得.3,221xx解得.2355,3255xx或.2332:或这两个数为答2.几何与方程 例1.一块长方形草地的长和宽分别为20cm和15cm,在它的四周外围环绕着宽度相等的小路.已知小路的面积为246cm2,求小路的宽度.得根据题意设小路的宽度解,:xm.2461525215)220(xx:整理得).,(241;321舍去不合题意xx,01233522xx:解得.3:m小路的宽度为答201515+2x20+2x几何与方程n例2.如图,在一块长92m,宽60m的矩形耕地上挖三条水渠,水渠的宽度都相等.水渠把耕地分成面积均
23、为885m2的6个矩形小块,水渠应挖多宽.得根据题意设水渠的宽度解,:xm.885660)292(xx:整理得).,(105;121舍去不合题意xx,01051062xx:解得.1:m水渠的宽度为答几何与方程n例3.将一条长为56cm的铁丝剪成两段,并把每一段围成一个正方形.n(1).要使这两个正方形的面积之和等于100cm2,该怎样剪?n(2).要使这两个正方形的面积之和等于196cm2,该怎样剪?n(3).这两个正方形的面积之和可能等于200m2吗?得根据题意设剪下的一段为解,.2:xcm.100456)4(22xx:整理得,0562xx:解得.,0,5621舍去不合题意xx.196,:2
24、cm面积能等于可围成一个正方形的其不剪答w 例例1.甲公司前年甲公司前年缴税缴税40万元,今年万元,今年缴税缴税48.4万元万元.该该公公司司缴税缴税的年平均增的年平均增长长率率为为多少多少?3.增长率与方程基本数量关系:a(1+x)2=b得根据题意设每年平均增长率为解,:x.4.48)1(402x:解这个方程).,(01.11%;101.1121舍去不合题意xx,21.1)1(2 x,1.1)1(x,1.11x%.10:每年的平均增长率为答w 例例2.某公司某公司计划经过两计划经过两年把某年把某种种商品的生商品的生产产成本降低成本降低19%,那,那么么平均每年需降低百分之几平均每年需降低百分
25、之几?增长率与方程.022500300:2 xx整理得得解这个方程,得根据题意分数为设每年平均需降低的百解,:x%.191)1(2x:解这个方程).,(9.01%;109.0121舍去不合题意xx,81.0)1(2 x,9.0)1(x,9.01x%.10:数为每年平均需降低的百分答w例例1.一次一次会议会议上上,每每两个参两个参加加会议会议的人都互相握了一的人都互相握了一次手次手,有人有人统计统计一共握了一共握了66次手次手.这这次次会议会议到到会会的人的人数数是多少是多少?4.美满生活与方程得根据题意设这次到会的人数为解,:x.6621xx:整理得).,(02231;12223121舍去不合
展开阅读全文