安徽省定远重点中学2018~2019学年高二上学期期末考试数学(理)试题含答案.docx
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《安徽省定远重点中学2018~2019学年高二上学期期末考试数学(理)试题含答案.docx》由用户(副主任)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 安徽省 定远 重点中学 2018 2019 年高 上学 期末考试 数学 试题 答案 下载 _考试试卷_数学_高中
- 资源描述:
-
1、 安徽省定远重点中学安徽省定远重点中学2018-2019学年高二上学期期末考试学年高二上学期期末考试 数学(理)试题(解析版)数学(理)试题(解析版) 一、选择题(本大题共 12 小题,共 60.0 分) 1. 命题“若 x,y都是偶数,则 + 也是偶数”的否命题是( ) A. 若 x,y 都是偶数,则 + 不是偶数 B. 若 x,y都不是偶数,则 + 不是偶数 C. 若 x,y都不是偶数,则 + 是偶数 D. 若 x,y 不都是偶数,则 + 不是偶数 【答案】D 【解析】解:因为原命题是“若 x,y 都是偶数,则 + 也是偶数”, 所以原命题的否命题为:“若 x,y不都是偶数,则 + 不是偶
2、数”, 故选:D 根据否命题是将原命题的条件结论都否来解答 本题考察原命题的否命题,这里要与命题的否定区别开来,是一个易错点.而且要注意 “都是”的否定为“不都是”,选择填空中常考察 2. 设 x、y 是两个实数,命题“x、y 中至少有一个数大于 1”成立的充分不必要条件 是( ) A. + = 2 B. + 2 C. 2+ 2 2 D. 1 【答案】B 【解析】 解: 若 1 1 时有 + 2但反之不成立, 例如当 = 3, = 10满足 + 2 但不满足 1 1 所以 1 1 是 + 2的充分不必要条件 所以 + 2是 x、y 中至少有一个数大于 1成立的充分不必要条件 故选:B 先求出
3、1 1 的必要不充分条件;利用逆否命题的真假一致,求出命题“x、y 中至少有 一个数大于 1”成立的充分不必要条件 本题考查逆否命题的真假是相同的,注意要说明一个命题不成立,常通过举反例 3. 已知 p:| 1| 2,q: ,若 ,同时为假命题,则满足条件的 x 的集 合为( ) A. *| 1或 3, + B. *| 1 3, + C. *| 3, + D. *| 1 3, + 第 2 页,共 13 页 【答案】D 【解析】解:对于命题 p:| 1| 2,解得 3或 1 q: , ,同时为假命题, 真 p假 1 0)上一点 A 关于原点的对称点为 B,F为其右焦点,若 ,设 = ,且 , 1
4、2, 4-,则该椭圆离心率的取值范围为( ) A. , 2 2 ,1- B. , 2 2 , 6 3 - C. , 6 3 ,1) D. , 2 2 , 3 2 - 【答案】B 【解析】解: 和 A 关于原点对称 也在椭圆上 设左焦点为 根据椭圆定义:| + | = 2 又 | = | | + | = 2 O是 的斜边中点, | = 2 又| = 2sin | = 2cos 代入2sin + 2cos = 2 = 1 sin + cos 即 = 1 sin:cos = 1 2(sin(: 4) , 12, 4 -, 3 + /4 2 3 2 sin( + 4) 1 2 2 6 3 故选:B 设
5、左焦点为,根据椭圆定义:| + | = 2,根据 B 和 A关于原点对称可知 | = |, 推知| + | = 2, 又根据 O是 的斜边中点可知| = 2, 在 中用和 c 分别表示出|和|代入| + | = 2中即可表示出 即离 心率 e,进而根据的范围确定 e的范围 本题主要考查了椭圆的性质.要特别利用好椭圆的定义 5. 光线被曲线反射,等效于被曲线在反射点处的切线反射.已知光线从椭圆的一个焦 点出发,被椭圆反射后要回到椭圆的另一个焦点;光线从双曲线的一个焦点出发被 双曲线反射后的反射光线等效于从另一个焦点发出; 如图, 椭圆 C: 2 2 + 2 2 = 1( 0)与双曲线: 2 2
6、2 2 = 1( 0, 0)有公共焦点,现一光线从它们的左焦 点出发,在椭圆与双曲线间连续反射,则光线经过2( )次反射后回到左焦点 所经过的路径长为( ) A. ( + ) B. 2( + ) C. ( ) D. 2( ) 【答案】D 【解析】解:因为光线被曲线反射,等效于被 曲线在反射点处的切线反射.已知光线从椭圆 的一个焦点出发,被椭圆反射后要回到椭圆的 另一个焦点;光线从双曲线的一个焦点出发被 双曲线反射后的反射光线等效于从另一个焦 点发出 所以,光线从左焦点出发经过椭圆反射要回到另一个焦点,光线从双曲线的左焦点出发 被双曲线反射后,反射光线的反向延长线过另一个焦点 如图,1= 2 2
7、, 1+ + 1= 2 2 + + 1= 2 2 所以光线经过2( )次反射后回到左焦点所经过的路径长为2( ) 故选:D 根据题意,可知光线从左焦点出发经过椭圆反射要回到另一个焦点,光线从双曲线的左 焦点出发被双曲线反射后,反射光线的反向延长线过另一个焦点,从而可计算光线经过 2( )次反射后回到左焦点所经过的路径长 本题以新定义为素材,考查椭圆、双曲线的定义,考查学生对新定义的理解,理解新定 义是关键 第 4 页,共 13 页 6. 已知P为抛物线2= 4上的任意一点, 记点P到y轴的距离为d, 对于给定点(4,5), 则| + 的最小值为( ) A. 34 B. 34 1 C. 34 2
8、 D. 34 4 【答案】B 【解析】 解: 抛物线2= 4的焦点(1,0), 准线l: = 1 如图所示,过点 P 作 交 y轴于点 M,垂足为 N, 则| = |, = | 1, | + | 1 = (4 1)2+ 52 1 = 34 1 故选:B 抛物线2= 4的焦点(1,0), 准线 l: = 1.如图所示, 过点 P作 交 y轴于点M, 垂足为N, 则| = |, | + | 1.即可得出 本题考查了抛物线的定义及其标准方程、两点之间的距离公式,考查了推理能力与计算 能力,属于中档题 7. 已知正方体 的棱长为 a, 设 = , = , = ,则等于( ) A. 30 B. 60 C
9、. 90 D. 120 【答案】D 【解析】解:正方体 的棱长为 a, 设 = , = , = , = , 是的补角, = = , = 60, = 120 故选:D 由 = , 得到是的补角, 由 = = , 得 = 60, 由此能求出. 本题考查两向量的夹角的求法, 考查空间中线线、 线面、 面面间的位置关系等基础知识, 考查运算求解能力,考查数形结合思想,是基础题 8. 如图,在空间直角坐标系中,正方体 1111的 棱长为 1,1 = 1 411,则 等于( ) A. (0, 1 4,1) B. ( 1 4,0,1) C. (0, 1 4,1) D. (1 4,0,1) 【答案】C 【解析
10、】解:正方体1111的棱长为 1,1 = 1 411, (1,1,0),(1, 3 4,1), = (1,3 4,1) (1,1,0) = (0, 1 4,1) 故选:C 利用正方体1111的棱长为 1,1 = 1 411,可得点 B,E 的坐标,进而得到 向量 本题考查了正方体的性质、空间直角坐标系、向量的坐标运算,属于基础题 9. 如图所示,平行六面体 1111中,以顶点 A为端点 的三条棱,两两夹角都为60,且 = 2, = 1,1= 3, M、N 分别为1、11的中点,则 MN 与 AC 所成角的余弦值 为( ) A. 13 14 B. 91 14 C. 91 28 D. 78 12
11、【答案】B 【解析】解:如图所示,平行六面体 1111中, 以顶点 A 为端点的三条棱,两两夹角都为60, 且 = 2, = 1,1= 3,M、N 分别为1、11的中点, /1/1, 1是 MN 与 AC 所成角(或所成角的补角), = 2+ 2 2 cos = 4 + 1 2 2 1 cos120= 7, 1= 2+ 1 2 2 1 cos120= 1 + 9 2 1 3 cos120= 13, 1= 2+ 1 2 2 1 cos60= 4 + 9 2 2 3 cos60= 7, cos1= 2:1 2;12 21 = 7:13;7 2713 = 91 14 故 MN 与 AC 所成角的余弦
12、值为 91 14 故选:B 第 6 页,共 13 页 由/1/1,得到1是 MN 与 AC 所成角(或所成角的补角),由此利用余弦 定理能求出 MN 与 AC 所成角的余弦值 本题考查异面直线所成角的余弦值的求法,考查余弦定理等基础知识,考查运算求解能 力,考查数形结合思想,是中档题 10. 已知曲线 C的方程为 = ln,则 C上点 = 1处的切线的倾斜角为( ) A. 6 B. 4 C. 3 4 D. 5 4 【答案】B 【解析】解: () = = ln + 1 (1) = 1 C上点 = 1处的切线斜率为 1 设倾斜角为则 tan = 1 0 = 4 故选:B 利用导数的几何意义:在切点
展开阅读全文