2020年高考文科数学全国卷Ⅰ真题文数试卷(详细解答版).pdf
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《2020年高考文科数学全国卷Ⅰ真题文数试卷(详细解答版).pdf》由用户(随风2020)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2020 年高 文科 数学 全国卷 真题文数 试卷 详细 解答 下载 _历年真题_高考专区_数学_高中
- 资源描述:
-
1、- 1 - 绝密绝密启用前启用前 2020 年普通高等学校招生全国统一考试年普通高等学校招生全国统一考试 文科数学文科数学 注意事项:注意事项: 1答卷前,考生务必将自己的姓名、准考证号填写在答题卡上答卷前,考生务必将自己的姓名、准考证号填写在答题卡上. 2回答选择题时回答选择题时,选出每小题答案后选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂用铅笔把答题卡上对应题目的答案标号涂 黑黑.如需改动如需改动,用橡皮擦干净后用橡皮擦干净后,再选涂其他答案标号再选涂其他答案标号.回答非选择题时回答非选择题时,将答案写将答案写 在答题卡上在答题卡上.写在本试卷上无效写在本试卷上无效. 3考试结束
2、后,将本试卷和答题卡一并交回考试结束后,将本试卷和答题卡一并交回. 一、选择题:本题共一、选择题:本题共 12 小题,每小题小题,每小题 5 分,共分,共 60 分。在每小题给出的四个选项分。在每小题给出的四个选项 中,只有一项是符合题目要求的中,只有一项是符合题目要求的. 1.已知集合 2 |340, 4,1,3,5Ax xxB ,则AB () A. 4,1 B.1,5 C.3,5D.1,3 【答案】D 【解析】 【分析】 首先解一元二次不等式求得集合 A,之后利用交集中元素的特征求得AB,得到结果. 【详解】由 2 340xx 解得14x , 所以| 14Axx , 又因为4,1,3,5B
3、 ,所以1,3AB , 故选:D. 【点睛】该题考查的是有关集合的问题,涉及到的知识点有利用一元二次不等式的解法求集 合,集合的交运算,属于基础题目. 2.若 3 12iiz ,则| |= z () A. 0B. 1 - 2 - C. 2 D. 2 【答案】C 【解析】 【分析】 先根据 2 1i 将z化简,再根据向量的模的计算公式即可求出 【详解】因为 3 1+21+21ziiiii ,所以 22 112z 故选:C 【点睛】本题主要考查向量的模的计算公式的应用,属于容易题 3.埃及胡夫金字塔是古代世界建筑奇迹之一,它的形状可视为一个正四棱锥,以该四棱锥的高 为边长的正方形面积等于该四棱锥一
4、个侧面三角形的面积,则其侧面三角形底边上的高与底 面正方形的边长的比值为() A. 51 4 B. 51 2 C. 51 4 D. 51 2 【答案】D 【解析】 【分析】 设,CDa PEb,利用 2 1 2 POCD PE得到关于, a b的方程,解方程即可得到答案. 【详解】如图,设,CDa PEb,则 2 222 4 a POPEOEb , - 3 - 由题意 2 1 2 POab,即 2 2 1 42 a bab,化简得 2 4( )210 bb aa , 解得 15 4 b a (负值舍去). 故选:C. 【点晴】本题主要考查正四棱锥的概念及其有关计算,考查学生的数学计算能力,是一
5、道容 易题. 4.设 O 为正方形 ABCD 的中心,在 O,A,B,C,D 中任取 3 点,则取到的 3 点共线的概率为 () A. 1 5 B. 2 5 C. 1 2 D. 4 5 【答案】A 【解析】 【分析】 列出从 5 个点选 3 个点的所有情况,再列出 3 点共线的情况,用古典概型的概率计算公式运 算即可. 【详解】如图,从O A B C D, , , ,5 个点中任取 3 个有 , , , , , , , , , , O A BO A CO A DO B C , , , , , , , , ,O B DO C DA B CA B D - 4 - , , , ,A C DB C D
6、共10种不同取法, 3 点共线只有 , A O C与 ,B O D共 2 种情况, 由古典概型的概率计算公式知, 取到 3 点共线的概率为 21 105 . 故选:A 【点晴】本题主要考查古典概型的概率计算问题,采用列举法,考查学生数学运算能力,是 一道容易题. 5.某校一个课外学习小组为研究某作物种子的发芽率 y 和温度 x(单位:C)的关系,在 20 个不同的温度条件下进行种子发芽实验,由实验数据( ,)(1,2,20) ii x yi 得到下面的散点图: 由此散点图,在 10C 至 40C 之间,下面四个回归方程类型中最适宜作为发芽率 y 和温度 x 的回归方程类型的是() A.y ab
7、x B. 2 yabx C.exyabD.lnyabx 【答案】D - 5 - 【解析】 【分析】 根据散点图的分布可选择合适的函数模型. 【详解】由散点图分布可知,散点图分布在一个对数函数的图象附近, 因此,最适合作为发芽率y和温度x的回归方程类型的是lnyabx. 故选:D. 【点睛】本题考查函数模型的选择,主要观察散点图的分布,属于基础题. 6.已知圆 22 60xyx,过点(1,2)的直线被该圆所截得的弦的长度的最小值为() A. 1B. 2 C. 3D. 4 【答案】B 【解析】 【分析】 根据直线和圆心与点(1,2)连线垂直时,所求的弦长最短,即可得出结论. 【详解】圆 22 60
8、xyx化为 22 (3)9xy,所以圆心C坐标为 (3,0)C ,半径为3, 设(1,2)P,当过点P的直线和直线CP垂直时,圆心到过点P的直线的距离最大,所求的弦 长最短, 根据弦长公式最小值为 2 2 9 |2 982CP . 故选:B. 【点睛】本题考查圆的简单几何性质,以及几何法求弦长,属于基础题. 7.设函数( )cos () 6 f xx在 ,的图像大致如下图,则 f(x)的最小正周期为() - 6 - A. 10 9 B. 7 6 C. 4 3 D. 3 2 【答案】C 【解析】 【分析】 由图可得:函数图象过点 4 ,0 9 ,即可得到 4 cos0 96 ,结合 4 ,0 9
9、 是 函数 fx图象与x轴负半轴的第一个交点即可得到 4 962 ,即可求得 3 2 , 再利用三角函数周期公式即可得解. 【详解】由图可得:函数图象过点 4 ,0 9 , 将它代入函数 fx可得: 4 cos0 96 又 4 ,0 9 是函数 fx图象与x轴负半轴的第一个交点, 所以 4 962 ,解得: 3 2 所以函数 fx的最小正周期为 224 3 3 2 T 故选:C 【点睛】本题主要考查了三角函数的性质及转化能力,还考查了三角函数周期公式,属于中 - 7 - 档题. 8.设 3 log 42a,则4 a ( ) A. 1 16 B. 1 9 C. 1 8 D. 1 6 【答案】B
10、【解析】 【分析】 首先根据题中所给的式子,结合对数的运算法则,得到 3 log 42 a ,即4 9 a ,进而求得 1 4 9 a ,得到结果. 【详解】由 3 log 42a可得 3 log 42 a ,所以4 9 a , 所以有 1 4 9 a , 故选:B. 【点睛】该题考查的是有关指对式的运算的问题,涉及到的知识点有对数的运算法则,指数 的运算法则,属于基础题目. 9.执行下面的程序框图,则输出的 n=() A. 17B. 19C. 21D. 23 【答案】C 【解析】 【分析】 - 8 - 根据程序框图的算法功能可知, 要计算满足135100n的最小正奇数n, 根据等差 数列求和
11、公式即可求出 【详解】 依据程序框图的算法功能可知, 输出的n是满足135100n的最小正奇数, 因为 2 1 11 12 1 351100 24 n n nn ,解得19n , 所以输出的21n 故选:C. 【点睛】本题主要考查程序框图的算法功能的理解,以及等差数列前n项和公式的应用,属于 基础题 10.设 n a是等比数列,且 123 1aaa, 234 +2aaa,则 678 aaa() A. 12 B. 24 C. 30 D. 32 【答案】D 【解析】 【分析】 根据已知条件求得q的值,再由 5 678123 aaaqaaa可求得结果. 【详解】设等比数列 n a的公比为q,则 2
12、1231 11aaaaqq, 232 2341111 12aaaa qa qa qa qqqq, 因此, 567525 6781111 132aaaa qa qa qa qqqq. 故选:D. 【点睛】本题主要考查等比数列基本量的计算,属于基础题 11.设 12 ,F F是双曲线 2 2 :1 3 y C x 的两个焦点,O为坐标原点,点P在C上且| | 2OP , 则 12 PFF的面积为() A. 7 2 B. 3 C. 5 2 D. 2 【答案】B - 9 - 【解析】 【分析】 由 12 FF P是以 P 为直角直角三角形得到 22 12 |16PFPF,再利用双曲线的定义得到 12
13、|2PFPF,联立即可得到 12 |PFPF,代入 1 2 F F P S 12 1 | 2 PFPF中计算即可. 【详解】由已知,不妨设 12 ( 2,0),(2,0)FF, 则1,2ac,因为 12 1 | 1| 2 OPFF, 所以点P在以 12 FF为直径的圆上, 即 12 FF P是以 P 为直角顶点的直角三角形, 故 222 1212 |PFPFFF, 即 22 12 |16PFPF,又 12 |22PFPFa, 所以 2 12 4|PFPF 22 12 |2PFPF 12 | 162PFPF 12 |PFPF, 解得 12 | 6PFPF ,所以 1 2 F F P S 12 1
14、 | 3 2 PFPF 故选:B 【点晴】本题考查双曲线中焦点三角面积的计算问题,涉及到双曲线的定义,考查学生的数 学运算能力,是一道中档题. 12.已知, ,A B C为球O的球面上的三个点, 1 O为ABC的外接圆,若 1 O的面积为4, 1 ABBCACOO,则球O的表面积为() A.64B.48C.36D.32 【答案】A 【解析】 【分析】 由已知可得等边ABC的外接圆半径,进而求出其边长,得出 1 OO的值,根据球截面性质, 求出球的半径,即可得出结论. 【详解】设圆 1 O半径为r,球的半径为R,依题意, - 10 - 得 2 4 ,2rr , 由正弦定理可得 2 sin602
15、3ABr , 1 2 3OOAB,根据圆截面性质 1 OO 平面ABC, 2222 11111 ,4OOO A ROAOOO AOOr, 球O的表面积 2 464SR . 故选:A 【点睛】本题考查球的表面积,应用球的截面性质是解题的关键,考查计算求解能力,属于 基础题. 二、填空题:本题共二、填空题:本题共 4 小题,每小题小题,每小题 5 分,共分,共 20 分分. 13.若 x,y 满足约束条件 220, 10, 10, xy xy y 则 z=x+7y 的最大值为_. 【答案】1 【解析】 【分析】 首先画出可行域,然后结合目标函数的几何意义即可求得其最大值. 【详解】绘制不等式组表示
16、的平面区域如图所示, - 11 - 目标函数7zxy即: 11 77 yxz , 其中 z 取得最大值时,其几何意义表示直线系在 y 轴上的截距最大, 据此结合目标函数的几何意义可知目标函数在点 A 处取得最大值, 联立直线方程: 220 10 xy xy ,可得点 A 的坐标为:()1,0A, 据此可知目标函数的最大值为: max 17 01z . 故答案为:1 【点睛】求线性目标函数 zaxby(ab0)的最值,当 b0 时,直线过可行域且在 y 轴上截距 最大时,z 值最大,在 y 轴截距最小时,z 值最小;当 b0 时,直线过可行域且在 y 轴上截距 最大时,z 值最小,在 y 轴上截
17、距最小时,z 值最大. 14.设向量(1, 1),(1,24)mmab ,若a b rr ,则m_. 【答案】5 【解析】 【分析】 根据向量垂直,结合题中所给的向量的坐标,利用向量垂直的坐标表示,求得结果. 【详解】由a b rr 可得 0a b , 又因为(1, 1),(1,24)abmm , 所以1 (1)( 1) (24)0a bmm , 即5m , - 12 - 故答案为:5. 【点睛】该题考查的是有关向量的问题,涉及到的知识点有向量垂直的坐标表示,属于基础 题目. 15.曲线ln1yxx的一条切线的斜率为 2,则该切线的方程为_. 【答案】2yx 【解析】 【分析】 设切线的切点坐
18、标为 00 (,)xy,对函数求导,利用 0 |2 x y ,求出 0 x,代入曲线方程求出 0 y, 得到切线的点斜式方程,化简即可. 【详解】设切线的切点坐标为 00 1 (,),ln1,1xyyxxy x , 0 00 0 1 |12,1,2 x x yxy x ,所以切点坐标为(1,2), 所求的切线方程为22(1)yx,即2yx. 故答案为:2yx. 【点睛】本题考查导数的几何意义,属于基础题. 16.数列 n a满足 2 ( 1)31 n nn aan ,前 16 项和为 540,则 1 a _. 【答案】7 【解析】 【分析】 对n为奇偶数分类讨论,分别得出奇数项、偶数项的递推关
展开阅读全文