书签 分享 收藏 举报 版权申诉 / 66
上传文档赚钱

类型《平面向量的运算》平面向量及其应用公开课课件(第1课时向量的加法运算).pptx

  • 上传人(卖家):ziliao2023
  • 文档编号:6343096
  • 上传时间:2023-06-28
  • 格式:PPTX
  • 页数:66
  • 大小:1.99MB
  • 【下载声明】
    1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
    2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
    3. 本页资料《《平面向量的运算》平面向量及其应用公开课课件(第1课时向量的加法运算).pptx》由用户(ziliao2023)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
    4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
    5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
    配套讲稿:

    如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。

    特殊限制:

    部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。

    关 键  词:
    平面向量的运算 平面 向量 运算 及其 应用 公开 课件 课时 加法
    资源描述:

    1、6.2平面向量的运算6.2.1 向量的加法运算1.1.向量加法的定义及其运算法则向量加法的定义及其运算法则(1)(1)向量加法的定义向量加法的定义定义:求两个向量和的运算,叫做向量的加法定义:求两个向量和的运算,叫做向量的加法.(2)(2)向量求和的法则向量求和的法则(3)(3)向量向量a,b的模与的模与a+b的模之间的关系:的模之间的关系:|a|a|+|+|b|.|.【思考思考】(1)(1)向量求和的三角形法则中求和的两个向量的起点与向量求和的三角形法则中求和的两个向量的起点与终点是怎样连接的?和向量的起点与终点是怎样的?终点是怎样连接的?和向量的起点与终点是怎样的?提示:提示:求和的两个向

    2、量求和的两个向量“首尾连接首尾连接”,其和向量是从,其和向量是从第一个向量的起点指向最后一个向量的终点的向量第一个向量的起点指向最后一个向量的终点的向量.(2)(2)向量求和的平行四边形法则中向量求和的平行四边形法则中“不共线不共线”是否多余是否多余,去掉可以吗?,去掉可以吗?提示:提示:不能,因为如果两个向量共线,就无法以它们不能,因为如果两个向量共线,就无法以它们为邻边作出平行四边形,也不会产生和向量为邻边作出平行四边形,也不会产生和向量.(3)(3)平行四边形法则中,求和的两个向量与和向量的起平行四边形法则中,求和的两个向量与和向量的起点有什么特点?和向量是怎样产生的?点有什么特点?和向

    3、量是怎样产生的?提示:提示:求和的两个向量与和向量共起点,和向量是以求和的两个向量与和向量共起点,和向量是以求和的两个向量为邻边的平行四边形的对角线向量求和的两个向量为邻边的平行四边形的对角线向量.2.2.向量加法的运算律向量加法的运算律交换律交换律结合律结合律a+b=b+a(a+b)+)+c=a+(+(b+c)【思考思考】(a+b)+()+(c+d)=()=(a+d)+()+(b+c)成立吗?成立吗?提示:提示:成立,向量的加法满足交换律和结合律,因此成立,向量的加法满足交换律和结合律,因此在进行多个向量的加法运算时,可以按照任意的次序在进行多个向量的加法运算时,可以按照任意的次序和任意的组

    4、合去进行和任意的组合去进行.【素养小测素养小测】1.1.思维辨析思维辨析(对的打对的打“”“”,错的打,错的打“”)”)(1)(1)a+0=a.()(2)(2)()(3)(3)()(4)(4)a+(+(b+c)=)=c+(+(a+b).).()ABBA2AB.ABBDDCAC.提示:提示:(1)(1).两个向量的和仍然是一个向量,所以两个向量的和仍然是一个向量,所以a+0=a.(2)(2).由向量加法的三角形法则知,由向量加法的三角形法则知,=0.(3).(3).(4).(4).由向量加法的交换律、结合律知,由向量加法的交换律、结合律知,a+(+(b+c)=)=(a+b)+)+c=c+(+(a

    5、+b).).ABBA ABBDDCADDCAC.2.2.如图,在如图,在O O中,向量中,向量 是是()OB OC AO ,A.A.有相同起点的向量有相同起点的向量B.B.共线向量共线向量C.C.模相等的向量模相等的向量D.D.相等的向量相等的向量【解析解析】选选C.C.由题干图可知由题干图可知 是模相等的向是模相等的向量,其模均等于圆的半径,故选量,其模均等于圆的半径,故选C.C.OB OC AO ,3.3.若若a表示表示“向东走向东走8 km”8 km”,b表示表示“向北走向北走8 km”8 km”,则则|a+b|=_|=_,a+b的方向是的方向是_._.【解析解析】如图所示,作如图所示,

    6、作 =a,=b,则则a+b=+=.=+=.所以所以|a+b|=|=8 (km)|=|=8 (km),因为因为AOB=45AOB=45,所以所以a+b的方向是东北方向的方向是东北方向.OAAB OAAB OB OB 22882答案:答案:8 km8 km东北方向东北方向2类型一向量的加法法则类型一向量的加法法则【典例典例】1.(20191.(2019济宁高一检测济宁高一检测)如图,在如图,在ABCABC中,中,D D,E E分别是分别是ABAB,ACAC上的点,上的点,F F为线段为线段DEDE延长线上一点,延长线上一点,DEBCDEBC,ABCFABCF,连接,连接CDCD,那么,那么(在横线

    7、上只填上一个在横线上只填上一个向量向量):=_ =_;=_.=_.ABDF ADFC2.2.下列说法正确的是下列说法正确的是_.(_.(填序号填序号)若若|a|=3=3,|b|=2|=2,则,则|a+b|1|1;若向量若向量a,b共线,则共线,则|a+b|=|=|a|+|+|b|;若若|a+b|=|=|a|+|+|b|,则向量,则向量a,b共线共线.3.3.如图,已知三个向量如图,已知三个向量a、b、c,试用三角形法则和平,试用三角形法则和平行四边形法则分别作向量行四边形法则分别作向量a+b+c.【思维思维引引】1.1.利用相等向量与向量加法的三角形法利用相等向量与向量加法的三角形法则求解则求

    8、解.2.2.利用向量利用向量a,b的模与的模与a+b的模之间的关系作出判断的模之间的关系作出判断.3.3.利用向量加法的三角形法则、平行四边形法则作图利用向量加法的三角形法则、平行四边形法则作图.【解析解析】1.1.如题干图,由已知得四边形如题干图,由已知得四边形DFCBDFCB为平行四为平行四边形,由向量加法的运算法则可知:边形,由向量加法的运算法则可知:答案:答案:ABDFABBCAC.ADFCADDBAB.AC AB 2.2.正确,当两向量反向时,和向量的模最小为正确,当两向量反向时,和向量的模最小为1 1;中描述的只是向量同向时的情况,故不正确,反之中描述的只是向量同向时的情况,故不正

    9、确,反之正确,即正确正确,即正确.答案:答案:3.3.利用三角形法则作利用三角形法则作a+b+c,如图所示,作,如图所示,作 =a,以以A A为起点,作为起点,作 =b,再以,再以B B为起点,作为起点,作 =c,则,则 =a+b+c.利用平行四边形法则作利用平行四边形法则作a+b+c,如图所示,作,如图所示,作 =a,=b,=c,以,以 、为邻边作为邻边作 OADBOADB,则,则OAAB BC OC OBBCOAABBC OAOC OB OAOB =a+b,再以,再以 、为邻边作为邻边作 ODECODEC,则,则 =a+b+c.ODODOC OEOD OC【内化内化悟悟】用三角形法则与平行

    10、四边形法则作三个或以上向量的用三角形法则与平行四边形法则作三个或以上向量的和的方法是怎样的?和的方法是怎样的?提示:提示:用分步作图的方法,即先作出其中两个向量的用分步作图的方法,即先作出其中两个向量的和,再作所得和向量与第三个向量的和,直至完成作和,再作所得和向量与第三个向量的和,直至完成作图图.【类题类题通通】1.1.向量求和的注意点向量求和的注意点(1)(1)三角形法则对于两个向量共线时也适用三角形法则对于两个向量共线时也适用.(2)(2)两个向量的和向量仍是一个向量两个向量的和向量仍是一个向量.(3)(3)平行四边形法则对于两个向量共线时不适用平行四边形法则对于两个向量共线时不适用.2

    11、.2.利用三角形法则的注意点利用三角形法则的注意点要注意两向量要注意两向量“首尾顺次相连首尾顺次相连”,其和向量为,其和向量为“起点起点指向终点指向终点”的向量;利用平行四边形法则要注意两向的向量;利用平行四边形法则要注意两向量量“共起点共起点”,其和向量为共起点的,其和向量为共起点的“对角线对角线”向量向量.【发散发散拓拓】向量求和的多边形法则向量求和的多边形法则(1)(1)已知已知n n个向量,依次首尾相接,则由起始向量的起个向量,依次首尾相接,则由起始向量的起点指向末尾向量的终点的向量即为这点指向末尾向量的终点的向量即为这n n个向量的和,这个向量的和,这称为向量求和的多边形法则称为向量

    12、求和的多边形法则.即即011223A AA AA A n2n1n1n0nAAAAA A.(2)(2)首尾顺次相接的若干向量求和,若构成一个封闭图首尾顺次相接的若干向量求和,若构成一个封闭图形,则它们的和为形,则它们的和为0.【延伸延伸练练】化简化简 的结果等于的结果等于()A.A.0B.B.C.C.D.D.OPPQQSSO OQSPSQ【解析解析】选选A.=A.=0.OPPQQSSO 【习练习练破破】如图,在正六边形如图,在正六边形ABCDEFABCDEF中,点中,点O O为中心,为中心,=a,=b,求,求 AB AF AC,AD,AE.【解析解析】由向量的平行四边形法则,得由向量的平行四边形

    13、法则,得 =a+b.在平行四边形在平行四边形ABCOABCO中,中,=a+a+b=2=2a+b.而而 =2 =2=2 =2a+2+2b,且,且AOABAF ACABAO ADAO =a+b,由三角形法则,得,由三角形法则,得 =b+a+b=a+2+2b.BCAOFE AEAFFE 类型二向量加法运算律的应用类型二向量加法运算律的应用【典例典例】化简:化简:(1)(1)(2)(2)世纪金榜导学号世纪金榜导学号 MABNACCB.ABBDCADC.【思维思维引引】利用向量加法的交换律使求和的各向量利用向量加法的交换律使求和的各向量首尾相接,然后再利用加法法则求和首尾相接,然后再利用加法法则求和.【

    14、解析解析】1MABNACCBMAACCBBN MCCNMN.2 ABBDCADCABBDDCCA.0【内化内化悟悟】1.1.如何进行多个向量相加或化简?如何进行多个向量相加或化简?提示:提示:观察向量的起点与终点字母的特点,看是否具观察向量的起点与终点字母的特点,看是否具备备“首尾相接首尾相接”.2.2.这种解题操作的理论依据是什么?这种解题操作的理论依据是什么?提示:提示:向量加法的交换律与结合律向量加法的交换律与结合律.【类题类题通通】向量加法运算律的意义和应用原则向量加法运算律的意义和应用原则(1)(1)意义:向量加法的运算律为向量加法提供了变形的意义:向量加法的运算律为向量加法提供了变

    15、形的依据,实现恰当利用向量加法法则运算的目的依据,实现恰当利用向量加法法则运算的目的.实际实际上,由于向量的加法满足交换律和结合律,故多个向上,由于向量的加法满足交换律和结合律,故多个向量的加法运算可以按照任意的次序、任意的组合来进量的加法运算可以按照任意的次序、任意的组合来进行行.(2)(2)应用原则:利用代数方法通过向量加法的交换律,应用原则:利用代数方法通过向量加法的交换律,使各向量使各向量“首尾相连首尾相连”,通过向量加法的结合律调整,通过向量加法的结合律调整向量相加的顺序向量相加的顺序.【习练习练破破】化简:化简:1 BCAB.2 DBCDBC.【解析解析】1 BCABABBCAC.

    16、2 DBCDBCBCCDDBBCCDDBBDDB.0【加练加练固固】在平行四边形在平行四边形ABCDABCD中中(如图如图),对角线,对角线ACAC,BDBD交于点交于点O O,则则 =_.=_.=_.=_.ADAB CDACDO =_.=_.=_.=_.ABADCD ACBADA 【解析解析】=0.答案:答案:0ADABAC.CDACDOCOACAO.ABADCDACCDAD.ACBADADAACBADCBAABBA AC AOAD类型三利用向量加法解决几何问题类型三利用向量加法解决几何问题【典例典例】用向量方法证明对角线互相平分的四边形是用向量方法证明对角线互相平分的四边形是平行四边形平行

    17、四边形.世纪金榜导学号世纪金榜导学号【思维思维引引】将互相平分利用向量表示,以此为条件将互相平分利用向量表示,以此为条件推证使四边形为平行四边形的向量等式成立推证使四边形为平行四边形的向量等式成立.【解析解析】如图,设四边形如图,设四边形ABCDABCD的对角线的对角线ACAC,BDBD相交于相交于点点O O,ACAC与与BDBD互相平分,互相平分,因此因此 且且|=|=|,即四边形,即四边形ABCDABCD是平行四边形是平行四边形.ABAOOB,DCDOOC.AOOC,OBDO,ABDC,AB DC CD AB【素养素养探探】在用向量加法证明几何问题时,经常利用核心素养中在用向量加法证明几何

    18、问题时,经常利用核心素养中的逻辑推理,通过对条件与结论的分析,确定论证思的逻辑推理,通过对条件与结论的分析,确定论证思路及方法予以证明路及方法予以证明.若将本例改为:四边形若将本例改为:四边形ABCDABCD中,中,求证四边形求证四边形ABCDABCD为矩形为矩形.ABDC,BCBA 且BCAB,【证明证明】因为四边形因为四边形ABCDABCD中,中,所以四边形所以四边形ABCDABCD为平行四边形,如图为平行四边形,如图.所以所以 因为因为 ABDC BCBABD ,BCABABBCAC,BCBABCAB,所以所以 ,即平行四边形对角线相等,即平行四边形对角线相等,故四边形故四边形ABCDA

    19、BCD为矩形为矩形.|BD|AC|【类题类题通通】利用向量解决几何问题的方法利用向量解决几何问题的方法用向量法证明几何问题的关键是把几何中的线段转化用向量法证明几何问题的关键是把几何中的线段转化为向量,通过向量的运算得到结论,然后把向量问题为向量,通过向量的运算得到结论,然后把向量问题还原为几何问题还原为几何问题.【习练习练破破】如图所示,如图所示,P P,Q Q是是ABCABC的边的边BCBC上两点,且上两点,且 =0.求证:求证:BPCQ APAQABAC.【证明证明】因为因为 所以所以 又因为又因为 =0,所以,所以 APABBP AQACCQ ,APAQABACBPCQ.BPCQ AP

    20、AQABAC.类型四航行中的向量加法问题类型四航行中的向量加法问题 【物理情境物理情境】在长江南岸的某渡口在长江南岸的某渡口A A处,江水以处,江水以12.5 km/h12.5 km/h的速度向的速度向东流,东流,“顺风号顺风号”渡船要以渡船要以25 km/h25 km/h的速度,由南向北的速度,由南向北垂直地渡过长江,其航向应如何确定?垂直地渡过长江,其航向应如何确定?【转化模板转化模板】1.1.由题意可得渡船的实际垂直过江的速度是船由题意可得渡船的实际垂直过江的速度是船的速度与水流速度的和,因此解决此问题可建立向量的速度与水流速度的和,因此解决此问题可建立向量加法模型加法模型.2.2.设设

    21、 表示水流速度,表示水流速度,表示渡船的速度,表示渡船的速度,表示渡船实际垂直过江的速度表示渡船实际垂直过江的速度.3.3.向量向量 方向为正东方向,长度为方向为正东方向,长度为12.512.5,向,向量量 的长度为的长度为2525,若向量,若向量 ,的和向量的和向量 与与 垂直,求向量垂直,求向量 的方向的方向.AB ADAC AB ADADAB AC AB AD4.4.如图所示,以如图所示,以ABAB为一边,为一边,ACAC为对角线作平行为对角线作平行四边形,在四边形,在RtRtACDACD中,中,ACD=90ACD=90,|=|=|=|=12.512.5,|=25|=25,CAD=30C

    22、AD=30.AB DC AD5.5.渡船的航向为北偏西渡船的航向为北偏西30301.针锋相对,比喻双方在策略、论点及行动方式等方面尖锐对立。势不两立:指敌对的双方不能同时存在,比喻矛盾不可调和。语境是“学好汉语就得弱化英语”,这不是敌对的双方,也不是“不能同时存在”,而是人们对这两者的学习方面存在严重分歧,故选“针锋相对”较好。2.学富五车,形容读书多,知识丰富。学贯中西:形容学问贯通了中国和西方的种种知识。语段中所举的钱钟书、林语堂和胡适的事例都是说明“他们的国学功底异常深厚,他们的英语水准堪称世界一流”,而非单纯指他们的学问大,故选“学贯中西”更合适。3.南辕北辙,比喻行动和目的相反,指自

    23、身的行动与自己的目的相反。背道而驰:比喻彼此的方向和目标完全相反,是指某人的做法和应遵循的大众化的目标相反。语境是“与时代的发展”相反,据此应该选“背道而驰”。4、合作学习的培养。合作学习既是一种方法也是一种能力,未来社会的人没有合作的态度是不行的。这节课我要求学生合作学习,培养学生的合作意识。5.分小组讨论是合作,表演课本剧更是合作的高级形式,在短短的时间内,同学们要把课文内容以课本剧的形式表演出来,没有合作的精神是不可能完成的。演课本剧不是一件简单的事情,这里有导演、演员的分工,道具的使用,等等。6.因为文中说,白兔原本是快乐的,自从拥有了月亮以后,她便产生了无穷的得失之患,所以她放弃了,

    24、求诸神之王撤销那个慷慨的决定。7.文章的结尾还说,和人类不同的是,我们的主人公毕竟慧心未泯。言外之意是肯定白兔的做法,希望人类也像白兔一样要学会放弃。8.这是这堂课最精彩的部分,不论学生的质疑,还是探究,都热情高涨,高潮迭起。由于课堂气氛宽松、和谐,教学双方对教材有深入的理解,所以能全身心地投入。9.特别是学生思维异常活跃,常常迸射智慧的火花,出现精彩的对答。在这一环节中,教者的点拨、引导,学生的质疑与解疑,师生之间思想的碰撞,语言的交流,课文内容与表达形式的交融无不令人赏心悦目。10教者在其中并没有越俎代庖,而是让学生当主角,根据课文脉络层层推进,剥茧式的教学提升了学生要洞悉底细的情绪。在不断探究研讨的过程中,学生充分享受了学习的乐趣和成功的喜悦。11.课文小结所以说我们认识和评价一个人应该一分为二,华歆不专心读书,追求富贵,但也有可取之处,就像我们今天所学文中他救人救到底的态度十分令人敬佩。12.而我们的同学们在学校的学习也应该是一分为二的,纪要学习文化知识,也要学习做人的道理。希望同学们做到重诺守信,言行必果!

    展开阅读全文
    提示  163文库所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
    关于本文
    本文标题:《平面向量的运算》平面向量及其应用公开课课件(第1课时向量的加法运算).pptx
    链接地址:https://www.163wenku.com/p-6343096.html

    Copyright@ 2017-2037 Www.163WenKu.Com  网站版权所有  |  资源地图   
    IPC备案号:蜀ICP备2021032737号  | 川公网安备 51099002000191号


    侵权投诉QQ:3464097650  资料上传QQ:3464097650
       


    【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。

    163文库