2022年北师大版《用树状图或表格求概率》公开课课件.ppt
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《2022年北师大版《用树状图或表格求概率》公开课课件.ppt》由用户(ziliao2023)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 用树状图或表格求概率 2022 北师大 树状 表格 概率 公开 课件
- 资源描述:
-
1、1.会用画树状图或列表的方法计算简单随机事件发生的概率;重点2.能用画树状图或列表的方法不重不漏地列举事件发生的所有可能情况.难点3.会用概率的相关知识解决实际问题.学习目标做一做:小明、小凡和小颖都想去看周末电影,但只有一张电影票.三人决定一起做游戏,谁获胜谁就去看电影.游戏规那么如下:连续抛掷两枚均匀的硬币,如果两枚正面朝上,那么小明获胜;如果两枚反面朝上,那么小颖获胜;如果一枚正面朝上、一枚反面朝上,小凡获胜.小明小颖小凡导入新课导入新课用树状图或表格求概率一问题1:你认为上面游戏公平吗?活动探究:1每人抛掷硬币20次,并记录每次试验的结果,根据记录填写下面的表格:讲授新课讲授新课2由上
2、面的数据,请你分别估计“两枚正面朝上“两枚反面朝上“一枚正面朝上、一枚反面朝上这三个事件的概率.问题2:通过实验数据,你认为该游戏公平吗?从上面的试验中我们发现,试验次数较大时,试验频率根本稳定,而且在一般情况下,“一枚正面朝上.一枚反面朝上发生的概率大于其他两个事件发生的概率.所以,这个游戏不公平,它对小凡比较有利.议一议:在上面抛掷硬币试验中,1抛掷第一枚硬币可能出现哪些结果?它们发生的可能性是否一样?2抛掷第二枚硬币可能出现哪些结果?它们发生的可能性是否一样?3在第一枚硬币正面朝上的情况下,第二枚硬币可能出现哪些结果?它们发生可能性是否一样?如果第一枚硬币反面朝上呢?我们可以用树状图或表
3、格表示所有可能出现的结果.开始正正第一枚硬币树状图反正,正正,反反正反反,正反,反第二枚硬币所有可能出现的结果表格第一枚硬币第二枚硬币正,正反,正正,反反,反总共有4中结果,每种结果出现的可能性相同.其中:小明获胜的概率:小颖获胜的概率:小凡获胜的概率:4141.21 利树状图或表格,我们可以不重复、不遗漏地列出所有可能性相同的结果,从而比较方便地求出某些事件发生的概率.方法归纳典例精析例1 某班有1名男生、2名女生在校文艺演出中获演唱奖,另有2名男生、2名女生获演奏奖.从获演唱奖和演奏奖的学生中各任选一人去领奖,求两人都是女生的概率.解:设两名领奖学生都是女生的事件为A,两种奖项各任选1人的
4、结果用“树状图来表示.开始获演唱奖的获演奏奖的男女女女1男2男1女2女1男2男1女1男2男1女2女2共有12中结果,且每种结果出现的可能性相等,其中2名都是女生的结果有4种,所以事件A发生的概率为P(A)=41=123计算等可能情形下概念的关键是确定所有可能性相等的结果总数n和求出事件A发生的结果总数m,“树状图能帮助我们有序的思考,不重复,不遗漏地得出n和m.例2 甲、乙、丙三人做传球的游戏,开始时,球在甲手中,每次传球,持球的人将球任意传给其余两人中的一人,如此传球三次.(1)写出三次传球的所有可能结果(即传球的方式);(2)指定事件A:“传球三次后,球又回到甲的手中,写出A发生的所有可能
5、结果;(3)求P(A).解:(1)第二次 第三次结果开始:甲开始:甲共有八种可能的结果,每种结果出现的可能性相同;2传球三次后,球又回到甲手中,事件A发生有两种可能出现结果乙,丙,甲丙,乙,甲 (3)P(A)=2184乙乙丙丙第一次甲甲甲甲丙丙乙乙甲甲甲甲丙丙丙丙乙乙乙乙乙乙丙丙丙,乙,丙丙,乙,丙乙,甲,丙乙,甲,丙乙,丙,甲乙,丙,甲乙,丙,乙乙,丙,乙丙,甲,乙丙,甲,乙丙,甲,丙丙,甲,丙丙,乙,甲丙,乙,甲乙,甲,乙乙,甲,乙方法归纳 当试验包含两步时,列表法比较方便;当然,此当试验包含两步时,列表法比较方便;当然,此时也可以用树形图法;时也可以用树形图法;当事件要经过多个当事件要经
6、过多个(三个或三个以上三个或三个以上)步骤完成时,步骤完成时,应选用树状图法求事件的概率应选用树状图法求事件的概率.思考 你能够用列表法写出3次传球的所有可能结果吗?假设再用列表法表示所有结果已经不方便!练一练1.经过某十字路口的汽车,可能直行,也可能向左转或向右转.如果这三种可能性大小相同,求三辆汽车经过这个十字路口时,以下事件的概率:1三辆车全部继续直行;2两车向右,一车向左;3至少两车向左.第一辆左右左右左直右左直右第二辆第三辆直直左右直左右直左直右左直右 左直右左直右 左直右左直右左直右左直右 左直右左直右 左直右左直右 左直右左直右 左直右左直右共有27种行驶方向2P两车向右,一车向
7、左=;3 P至少两车向左=191.2711=;27P()(全 部 继 续 直 行)2.现在学校决定由甲同学代表学校参加全县的诗歌朗诵比赛,甲同学有3件上衣,分别为红色(R)、黄色(Y)、蓝色(B),有2条裤子,分别为蓝色(B)和棕色(b)。甲同学想要穿蓝色上衣和蓝色裤子参加比赛,你知道甲同学任意拿出1件上衣和1条裤子,恰好是蓝色上衣和蓝色裤子的概率是多少吗?上衣:裤子:解:用“树状图列出所有可能出现的结果:每种结果的出现是等可能的“取出件蓝色上衣和条蓝色裤子记为事件,那么事件发生的概率是所以,甲同学恰好穿上蓝色上衣和蓝色裤子的概率是6161开始上衣裤子所有可能出现的结果典例精析例3 同时抛掷2
8、枚均匀的骰子一次,骰子各面上的点数分别是1,2,6.试分别计算如下各随机事件的概率.(1)抛出的点数之和等于8;(2)抛出的点数之和等于12.分析:首先要弄清楚一共有多少个可能结果.第1枚骰子可能掷出1,2,6中的每一种情况,第2枚骰子也可能掷出1,2,6中的每一种情况.可以用“列表法列出所有可能的结果如下:第2枚 骰子第1枚骰子结 果123456123456(1,1)(1,2)(1,3)(1,4)(1,5)(1,6)(2,1)(3,1)(4,1)(5,1)(6,1)(2,2)(2,3)(2,4)(2,5)(2,6)(3,2)(3,3)(3,4)(3,5)(3,6)(4,2)(5,2)(6,2
9、)(4,3)(5,3)(6,3)(4,4)(5,4)(6,4)(4,5)(5,5)(6,5)(4,6)(5,6)(6,6)解:从上表可以看出,同时抛掷两枚骰子一次,所有可能出现的结果有36种.由于骰子是均匀的,所以每个结果出现的可能性相等.(1)抛出点数之和等于8的结果有(2,6),(3,5),(4,4),(5,3)和(6,2)这5种,所以抛出的点数之和等于8的这个事件发生的概率为536;(2)抛出点数之和等于12的结果仅有(6,6)这1种,所以抛出的点数之和等于12的这个事件发生的概率为1.36 当一次试验要涉及两个因素例如掷两个骰子并且可能出现的结果数目较多时,为不重不漏地列出所有可能结果
10、,通常采用列表法.归纳总结例4:一只不透明的袋子中装有1个白球和2个红球,这些球除颜色外都相同,搅匀后从中任意摸出一个球,记录下颜色后放回袋中并搅匀,再从中任意摸出一个球,两次都摸出红球的概率是多少?1 2结果第一次第二次解:利用表格列出所有可能的结果:次摸出红球4(2)=9P白红1红2白红1红2白,白白,红1 白,红2红1,白红1,红1红1,红2红2,白 红2,红1红2,红2变式:一只不透明的袋子中装有1个白球和2个红球,这些球除颜色外都相同,搅匀后从中任意摸出一个球,记录下颜色后不再放回袋中,再从中任意摸出一个球,两次都摸出红球的概率是多少?解:利用表格列出所有可能的结果:次摸出红球21(
展开阅读全文