理论力学(第7版)第十三章 达朗贝尔定理.ppt
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《理论力学(第7版)第十三章 达朗贝尔定理.ppt》由用户(saw518)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 理论力学第7版第十三章 达朗贝尔定理 理论 力学 第十三 达朗贝尔 定理
- 资源描述:
-
1、1.常力在直线运动中的功常力在直线运动中的功:单位单位:J(焦耳)(焦耳)1 J=1 Nm 力的功力的功是力沿路程累积效应的度量。是力沿路程累积效应的度量。13-1 13-1 力的功力的功元功元功2.变力在曲线运动中的功变力在曲线运动中的功:令:令:力力 在在 路程上的功:路程上的功:1)、重力的功、重力的功质点系质点系:由由重力的功只与始、末位置有关,与路径无关。重力的功只与始、末位置有关,与路径无关。3.常见力的功常见力的功质点:质点:重力在三轴上的投影:重力在三轴上的投影:k弹簧刚度系数弹簧刚度系数(N/m)弹性力:弹性力:弹性力的功:弹性力的功:re因因式中式中即即 弹性力的功只与弹弹
2、性力的功只与弹簧在初始和末了位置簧在初始和末了位置的变形有关,与作用的变形有关,与作用点路径无关。点路径无关。若若 常量常量从角从角 转动到角转动到角 过程中力过程中力 的功为:的功为:同样适用于刚体上作同样适用于刚体上作用一力偶所作的功。用一力偶所作的功。当质心由当质心由 ,转角由,转角由 时,力系的功:时,力系的功:平面运动刚体上力系的功,等于力系向质心简平面运动刚体上力系的功,等于力系向质心简化所得的力和力偶作功之和。化所得的力和力偶作功之和。说明:说明:1、对任何运动的刚体,上述结论都适用;、对任何运动的刚体,上述结论都适用;2、C点为刚体上任意一点,上述结论仍成立;点为刚体上任意一点
3、,上述结论仍成立;3、计算力系的主矢、主矩时,不作功的力可、计算力系的主矢、主矩时,不作功的力可 不考虑。不考虑。4.平面运动刚体上力系的功平面运动刚体上力系的功例:例:图示弹簧原长图示弹簧原长l=100mm,刚性系,刚性系数数k=4.9KN/m,一端固定在点一端固定在点O,此点,此点在半径为在半径为R=100mm的圆周上。如弹簧的圆周上。如弹簧的另一端由点的另一端由点B拉至点拉至点A和由点和由点A拉至拉至点点D,AC垂直垂直BC,OA和和BD为直径。为直径。分别计算弹簧力所作的功。分别计算弹簧力所作的功。COABD解:解:对于弹簧作功:对于弹簧作功:2、质点系的动能、质点系的动能1、质点的动
4、能、质点的动能 单位:单位:J(焦耳)(焦耳)(1)平移刚体的动能)平移刚体的动能 即即(2)定轴转动刚体的动能)定轴转动刚体的动能 即即 13-2 13-2 质点和质点系的动能质点和质点系的动能 平面运动刚体的动能等于随质心平移的动能平面运动刚体的动能等于随质心平移的动能 与绕质心转动的动能之和。与绕质心转动的动能之和。速度瞬心:速度瞬心:P(3)平面运动刚体的动能)平面运动刚体的动能上面结论也适用于刚体的任意运动。上面结论也适用于刚体的任意运动。两端乘两端乘 ,1、质点的动能定理、质点的动能定理质点动能的增量等于作用在质点上力的元功。质点动能的增量等于作用在质点上力的元功。在质点运动的某个
5、过程中,质点动能的改变量等于在质点运动的某个过程中,质点动能的改变量等于作用于质点的力作的功。作用于质点的力作的功。13-3 13-3 动能定理动能定理2、质点系的动能定理、质点系的动能定理质点系动能的增量,等于作用于质点系全部力所作的质点系动能的增量,等于作用于质点系全部力所作的元功的和。元功的和。求和求和质点系在某一段运动过程中,起点和终点的动能改变量,质点系在某一段运动过程中,起点和终点的动能改变量,等于作用于质点系的全部力在这段过程中所作功的和。等于作用于质点系的全部力在这段过程中所作功的和。3、理想约束、理想约束定义:约束力作功等于零的约束为定义:约束力作功等于零的约束为理想约束。理
6、想约束。、对理想约束,在动能定理中只计入主动力的功即可。对理想约束,在动能定理中只计入主动力的功即可。l质点系质点系内力作功之和不一定等于零。内力作功之和不一定等于零。质点系内力作功问题:质点系内力作功问题:1)相互吸引或排斥的质点,两力作功和不为零。)相互吸引或排斥的质点,两力作功和不为零。2)当力作用点有滑动摩擦时,滑动摩擦力与)当力作用点有滑动摩擦时,滑动摩擦力与 物体的相对位移相反,摩擦力作负功。物体的相对位移相反,摩擦力作负功。l刚体(特殊的质点系)所有内力作功的和等于零。刚体(特殊的质点系)所有内力作功的和等于零。例例1 已知:轮已知:轮O的的R1、m1,质质量分布在轮缘上量分布在
7、轮缘上;均质轮均质轮C的的R2、m2纯滚动纯滚动,初始静止初始静止;,M为常力偶。为常力偶。求:轮心求:轮心C走过路程走过路程S时的速度时的速度和加速度和加速度解:解:其中:其中:式式(a)是函数关系式,两端对是函数关系式,两端对t求导,求导,已知:轮已知:轮O的的R1、m1,;均质轮均质轮C的的R2、m2纯滚动纯滚动,初始静止初始静止;,M为为常力偶。常力偶。求:轮心求:轮心C走过路程走过路程S时的速度和加速度时的速度和加速度 例例2 冲击试验机冲击试验机m=18kg,l=840mm,杆重不计,在杆重不计,在 时静止释放,冲断试件后摆至时静止释放,冲断试件后摆至求:冲断试件需用的能量求:冲断
展开阅读全文