书签 分享 收藏 举报 版权申诉 / 12
上传文档赚钱

类型专题04 因动点产生的相似、全等问题-2019版突破中考数学压轴之学霸秘笈大揭秘(原卷版).doc

  • 上传人(卖家):四川天地人教育
  • 文档编号:621073
  • 上传时间:2020-07-06
  • 格式:DOC
  • 页数:12
  • 大小:1.40MB
  • 【下载声明】
    1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
    2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
    3. 本页资料《专题04 因动点产生的相似、全等问题-2019版突破中考数学压轴之学霸秘笈大揭秘(原卷版).doc》由用户(四川天地人教育)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
    4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
    5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
    配套讲稿:

    如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。

    特殊限制:

    部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。

    关 键  词:
    专题04 因动点产生的相似、全等问题-2019版突破中考数学压轴之学霸秘笈大揭秘原卷版 专题 04 产生 相似 全等 问题 2019 突破 中考 数学 压轴 秘笈 揭秘 原卷版 下载 _二轮专题_中考复习_数学_初中
    资源描述:

    1、 【类型综述】 函数中因动点产生的相似三角形问题一般有三个解题途径 求相似三角形的第三个顶点时,先要分析已知三角形的边和角的特点,进而得出已知三角形是否为 特殊三角形。根据未知三角形中已知边与已知三角形的可能对应边分类讨论。 或利用已知三角形中对应角,在未知三角形中利用勾股定理、三角函数、对称、旋转等知识来推导 边的大小。 若两个三角形的各边均未给出,则应先设所求点的坐标进而用函数解析式来表示各边的长度,之后 利用相似来列方程求解。 【方法揭秘】 相似三角形的判定定理有 3 个,其中判定定理 1 和判定定理 2 都有对应角相等的条件,因此探求两个 三角形相似的动态问题,一般情况下首先寻找一组对

    2、应角相等 判定定理 2 是最常用的解题依据,一般分三步:寻找一组等角,分两种情况列比例方程,解方程并检 验 如果已知AD,探求ABC 与DEF 相似,只要把夹A 和D 的两边表示出来,按照对应边成 比例,分 ABDE ACDF 和 ABDF ACDE 两种情况列方程 应用判定定理 1 解题,先寻找一组等角,再分两种情况讨论另外两组对应角相等 应用判定定理 3 解题不多见,根据三边对应成比例列连比式解方程(组) 还有一种情况,讨论两个直角三角形相似,如果一组锐角相等,其中一个直角三角形的锐角三角比是 确定的,那么就转化为讨论另一个三角形是直角三角形的问题 求线段的长,要用到两点间的距离公式,而这

    3、个公式容易记错理解记忆比较好 如图 1,如果已知 A、B 两点的坐标,怎样求 A、B 两点间的距离呢? 我们以 AB 为斜边构造直角三角形, 直角边与坐标轴平行, 这样用勾股定理就可以求斜边 AB 的长了 水 平距离 BC 的长就是 A、B 两点间的水平距离,等于 A、B 两点的横坐标相减;竖直距离 AC 就是 A、B 两点 间的竖直距离,等于 A、B 两点的纵坐标相减 来源:163文库 ZXXK 图 1 【典例分析】 例 1 如图 1,已知直线 yx3 与 x 轴、y 轴分别交于 A、B 两点,抛物线 yx2bxc 经过 A、 B 两点,点 P 在线段 OA 上,从点 O 出发,向点 A 以

    4、每秒 1 个单位的速度匀速运动;同时,点 Q 在线段 AB 上,从点 A 出发,向点 B 以每秒2个单位的速度匀速运动,连结 PQ,设运动时间为 t 秒 (1)求抛物线的解析式; (2)问:当 t 为何值时,APQ 为直角三角形; (3)过点 P 作 PE/y 轴,交 AB 于点 E,过点 Q 作 QF/y 轴,交抛物 线于点 F,连结 EF,当 EF/PQ 时,求点 F 的坐标; (4)设抛物线顶点为 M,连结 BP、BM、MQ,问:是否存在 t 的值,使以 B、Q、M 为顶点的三角形 与以 O、B、P 为顶点的三角形相似?若存在,请求出 t 的值;若不存在,请说明理由 例例 2 二次函数

    5、yax2bxc(a0)的图象与 x 轴交于 A(3, 0)、B(1, 0)两点,与 y 轴交于点 C(0, 3m)(m0) ,顶点为 D (1)求该二次函数的解析式(系数用含 m 的代数式表示) ; (2)如图 1,当 m2 时,点 P 为第三象限内抛物线上的一个动点,设APC 的面积为 S,试求出 S 与 点 P 的横坐标 x 之间的函数关系式及 S 的最大值; (3)如图 2,当 m 取何值时,以 A、D、C 三点为顶点的三角形与OBC 相似? 图 1 图 2 例 3 如图 1,在平面直角坐标系中,双曲线(k0)与直线 yx2 都经过点 A(2, m) (1)求 k 与 m 的值; (2)

    6、此双曲线又经过点 B(n, 2),过点 B 的直线 BC 与直线 yx2 平行交 y 轴于点 C,联结 AB、AC, 求ABC 的面积; (3)在(2)的条件下,设直线 yx2 与 y 轴交于点 D,在射线 CB 上有一点 E,如果以点 A、C、E 所组成的三角形与ACD 相似,且相似比不为 1,求点 E 的坐标 图 1 例 4 如图 1,RtABC 中,ACB90 ,AC6 cm,BC8 cm,动点 P 从点 B 出发,在 BA 边上以 每秒 5 cm 的速度向点 A 匀速运动,同时动点 Q 从点 C 出发,在 CB 边上以每秒 4 cm 的速度向点 B 匀速运 动,运动时间为 t 秒(0t

    7、2) ,连接 PQ (1)若BPQ 与ABC 相似,求 t 的值; (2)如图 2,连接 AQ、CP,若 AQCP,求 t 的值; (3)试证明:PQ的中点在ABC 的一条中位线上 图 1 图 2 例 5 如图 1,已知抛物线 2 11 (1) 444 b yxbx (b 是实数且 b2)与 x 轴的正半轴分别交于点 A、B (点 A 位于点 B 是左侧) ,与 y 轴的正半轴交于点 C (1)点 B 的坐标为_,点 C 的坐标为_(用含 b 的代数式表示) ; (2)请你探索在第一象限内是否存在点 P,使得四边形 PCOB 的面积等于 2b,且PBC 是以点 P 为直 角顶点的等腰直角三角形

    8、?如果存在,求出点 P 的坐标;如果不存在,请说明理由; (3)请你进一步探索在第一象限内是否存在点 Q,使得QCO、QOA 和QAB 中的任意两个三角形 均相似(全等可看作相似的特殊情况)?如果存在,求出点 Q 的坐标;如果不存在,请说明理由 图 1 例 6 如图 1,已知抛物线的方程 C1: 1 (2)()yxxm m (m0)与 x 轴交于点 B、C,与 y 轴交于点 E,且点 B 在点 C 的左侧 (1)若抛物线 C1 过点 M(2, 2),求实数 m 的值; (2)在(1)的条件下,求BCE 的面积; (3)在(1)的条件下,在抛物线的对称轴上找一点 H,使得 BHEH 最小,求出点

    9、 H 的坐标; (4)在第四象限内,抛物线 C1 上是否存在点 F,使得以点 B、C、F 为顶点的三角形与BCE 相似? 若存在,求 m 的值;若不存在,请说明理由 图 1 【变式训练】 1 如图, 在四边形中, 点 为边上一动点, 若 与是相似三角形,则满足条件的点 的个数是( ) A 个 B 个 C 个 D 个 2如图,在四边形 ABCD 中,ADBC,ABC=90 ,AD=2 ,BC=6 ,AB=7 ,点 P 是从点 B 出发 在射线 BA 上的一个动点,运动的速度是 1/s,连结 PC、PD若PAD 与PBC 是相似三角形,则满足 条件的点 P 个数是( ) A5 个 B4 个 C3

    10、个 D2 个 3已知:如图,在长方形 ABCD 中,AB=4,AD=6.延长 BC 到点 E,使 CE=2,连接 DE,动点 P 从点 B 出发, 以每秒 2 个单位的速度沿 BCCDDA 向终点 A 运动,设点 P 的运动时间为 t 秒,当 t 的值为 ( ) 秒时, ABP 和DCE 全等 A1 B1 或 3 C1 或 7 D3 或 7 4如图,在中,点 是边上一动点(不与 、 重合) ,交于 点 ,且,则线段的最大值为_ 5如图, Rt ABC中, 90 ,8,3CACBC, , ,AEAC P Q分别是,AC AE上动点,且 PQAB,当AP=_时,才能使ABC和PQA全等. 6如图,

    11、在ABC 中,AB=AC=10,点 D 是边 BC 上一动点 (不与 B,C 重合) ,ADE=B=,DE 交 AC 于点 E,且 下列结论: ADEACD; 当 BD=6 时,ABD与DCE 全等; DCE为直角三角形时,BD为 8或; CD2=CECA 其中正确的结论是_ (把你认为正确结论的 序号都填上) 7如图,在中,点 是边上的动点(点 与点 、 不重合) , 过动点 作交于点 若与相似,则_ 8如图,直线与 轴交于点,与 轴交于点 ,抛物线 经过点. (1)求抛物线的解析式, (2)已知点 是抛物线上的一个动点,并且点 在第二象限内,过动点 作轴于点 ,交线段于点 . 如图 1,过

    12、 作轴于点 ,交抛物线于两点(点位于点 的左侧),连接,当线段的长度最 短时,求点的坐标, 如图 2,连接,若以为顶点的三角形与相似,求的面积. 9如图,抛物线与坐标轴交点分别为,作直线 BC 求抛物线的解析式; 点 P 为抛物线上第一象限内一动点, 过点 P作轴于点 D, 设点 P 的横坐标为, 求 的面积 S与 t的函数关系式; 条件同,若与相似,求点 P 的坐标 10如图,抛物线 2 0yaxbxc a的顶点坐标为2, 1,并且与y轴交于点0,3C,与x轴交于 A、B两点 (1)求抛物线的表达式 (2)如图1,设抛物线的对称轴与直线BC交于点D,点E为直线BC上一动点,过点E作y轴的平行

    13、 线EF,与抛物线交于点F,问是否存在点E,使得以D、E、F为顶点的三角形与BCO相似若存 在,求出点E的坐标;若不存在,请说明理由 11如图,在平面直角坐标系中,直线与坐标轴分别交于 、 两点,抛物线过 、 两点,点 为线段上一动点,过点 作轴于点 ,交抛物线于点 求抛物线的解析式 求面积的最大值 连接,是否存在点 ,使得和相似?若存在,求出点 坐标;若不存在,说明理由 12在平面直角坐标系中,抛物线与 轴的两个交点分别为 A(-3,0) 、B(1,0) , 与 y 轴交于点 D(0,3),过顶点 C 作 CHx 轴于点 H. (1)求抛物线的解析式和顶点 C 的坐标;来源:163文库 ZX

    14、XK (2)连结 AD、CD,若点 E 为抛物线上一动点(点 E 与顶点 C 不重合) ,当ADE 与ACD 面积相等时, 求点 E 的坐标; (3)若点 P 为抛物线上一动点(点 P 与顶点 C 不重合) ,过点 P 向 CD 所在的直线作垂线,垂足为点 Q, 以 P、C、Q 为顶点的三角形与ACH 相似时,求点 P 的坐标. 13抛物线过点和,点 P为 x轴正半轴上的一个动点,连接 AP,在 AP 右侧作,且,点 B 经过矩形 AOED的边 DE 所在的直线,设点 P 横坐标为 t来源:学科网 ZXXK 求抛物线解析式; 当点 D落在抛物线上时,求点 P 的坐标; 若以 A、B、D 为顶点

    15、的三角形与相似,请直接写出此时 t的值 14如图,已知抛物线 2 yaxbxc的对称轴为直线1x , ( 0a) ,且经过1,0A 、0, 3C两 点,与x轴交于另一点B,设D是抛物线的对称轴1x 上的一动点,且90DCB (1)求这条抛物线所对应的函数关系式 (2)求点D的坐标 (3)探究坐标轴上是否存在点P,使得P、A、C为顶点的三角形与BCD相似?若存在,请指出符合 条件的点P的位置,并直接写出点P的坐标;若不存在,请说明理由 15如图,已知抛物线与 x 轴交于 A(1,0) ,B(3,0) ,与 y 轴交于 C(0,3) ,顶点为点 M (1)求抛物线的解析式及点 M 的坐标 (2)点

    16、 P 是直线 BC 在 y 轴右侧部分图象上的动点,若点 P,点 C,点 M 所构成的三角形与AOC 相似, 求符合条件的 P 点坐标 (3)过点 C 作 CDAB,CD 交抛物线于点 D,点 Q 是线段 CD 上的一动点,作直线 QN 与线段 AC 交于 点 N,与 x 轴交于点 E,且BQEBDC,当 CN 的值最大时,求点 E 的坐 标 16如图,在平面直角坐标系 xOy中,将抛物线 y=x2平移,使平移后的抛物线经过点 A(3,0) 、B(1, 0) (1)求平移后的抛物线的表达式 (2)设平移后的抛物线交 y轴于点 C,在平移后的抛物线的对称轴上有一动点 P,当 BP 与 CP 之和

    17、最小时,P 点坐标是多少? (3)若 y=x2与平移后的抛物线对称轴交于 D点,那么,在平移后的抛物线的对称轴上,是否存在一点 M,使 得以 M、O、D为顶点的三角形BOD 相似?若存在,求点 M 坐标;若不存在,说明理由 17已知抛物线的图象经过点、,顶点为 ,与 轴交于点 求抛物线的解析式和顶点 的坐标; 如图 , 为线段上一点,过点 作 轴平行线,交抛物线于点 ,当的面积最大时,求点 的坐 标; 如图 ,若点 是直线上的动点,点 、 、 所构成的三角形与相似,请直接写出所有点 的坐 标; 如图 ,过 作轴于 点,是 轴上一动点, 是线段上一点,若,则 的最大 值为_,最小值为_ 18如图

    18、,已知抛物线的对称轴是 y 轴,且点(2,2) , (1, 5 4 )在抛物线上,点 P 是抛物线上不与顶点 N 重合的一动点,过 P 作 PAx 轴于 A,PCy 轴于 C,延长 PC 交抛物线于 E,设 M 是 O 关于抛物线顶点 N 的对称点,D 是 C 点关于 N 的对称点 (1)求抛物线的解析式及顶点 N 的坐标;来源:学.科.网 (2)求证:四边形 PMDA 是平行四边形; (3)求证:DPEPAM,并求出当它们的相似比为3时的点 P 的坐标 19如图 1,抛物线 2 yxbxc 经过 1,0A , 4,0B 两点,与 y 轴相交于点 C,连接 BC点 P 为抛物线上一动点,过点

    19、P 作 x 轴的垂线 l,交直线 BC 于点 G,交 x 轴于点 E 求抛物线的表达式;来源:学*科*网 当 P 位于 y 轴右边的抛物线上运动时,过点 C 作 CF 直线 l, F 为垂足当点 P 运动 到何处时,以 P, C, F 为顶点的三角形与 OBC 相似?并求出此时点 P 的坐标; 如图 2,当点 P 在位于直线 BC 上方的抛物线上运动时,连接 PC, PB请问 PBC 的面积 S 能否取得最大值?若能,请求出最大面积 S,并求出此时点 P 的坐标;若不能,请说明理由 20如图,已知抛物线经过 A(2,0) ,B(3,3)及原点 O,顶点为 C (1)求抛物线的解析式; (2)若点 D 在抛物线上,点 E 在抛物线的对称轴上,且 A、O、D、E 为顶点的四边形是平行四边形,求 点 D 的坐标; (3)P 是抛物线上的第一象限内的动点,过点 P 作 PMx 轴,垂足为 M,是否存在点 P,使得以 P、M、A 为顶点的三角形BOC 相似?若存在,求出点 P 的坐标;若不存在,请说明理由

    展开阅读全文
    提示  163文库所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
    关于本文
    本文标题:专题04 因动点产生的相似、全等问题-2019版突破中考数学压轴之学霸秘笈大揭秘(原卷版).doc
    链接地址:https://www.163wenku.com/p-621073.html
    四川天地人教育
         内容提供者      个人认证 实名认证

    Copyright@ 2017-2037 Www.163WenKu.Com  网站版权所有  |  资源地图   
    IPC备案号:蜀ICP备2021032737号  | 川公网安备 51099002000191号


    侵权投诉QQ:3464097650  资料上传QQ:3464097650
       


    【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。

    163文库