书签 分享 收藏 举报 版权申诉 / 21
上传文档赚钱

类型4.2 证明(2).ppt

  • 上传人(卖家):hwpkd79526
  • 文档编号:6157673
  • 上传时间:2023-06-04
  • 格式:PPT
  • 页数:21
  • 大小:1.16MB
  • 【下载声明】
    1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
    2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
    3. 本页资料《4.2 证明(2).ppt》由用户(hwpkd79526)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
    4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
    5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
    配套讲稿:

    如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。

    特殊限制:

    部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。

    关 键  词:
    4.2 证明2 证明
    资源描述:

    1、w证明命题的一般步骤证明命题的一般步骤:回顾与思考回顾与思考w(1)根据题意根据题意,画出图形;画出图形;w(2)分清命题的条件和结论,结合图形,在分清命题的条件和结论,结合图形,在“已已知知”中写出条件,在中写出条件,在“求证求证”中写出结论;中写出结论;w(3)在在“证明证明”中写出推理过程中写出推理过程.依据思路依据思路,运用数学符号和数学语言条理清晰运用数学符号和数学语言条理清晰地写出证明过程;地写出证明过程;检查表达过程是否正确、完善检查表达过程是否正确、完善.ABC对于三角形,我们已经有哪些认识?对于三角形,我们已经有哪些认识?合作探索合作探索定义定义分类分类内角和内角和外角和外角

    2、和三角形的三个内角的和等于三角形的三个内角的和等于180180.例例1 1、求证:、求证:ABC已知:已知:求证:求证:如图,如图,AA,BB,CC是是ABCABC的三个内角的三个内角.A+B+C=180A+B+C=180 实验实验1:先将纸片三角形一角折向其对边,使顶点先将纸片三角形一角折向其对边,使顶点落在对边上,折线与对边平行(图落在对边上,折线与对边平行(图1),然后把另处),然后把另处两角相向对折,使其顶点与已折角的顶点相嵌合两角相向对折,使其顶点与已折角的顶点相嵌合(图(图2)、(图)、(图3),最后得到(图),最后得到(图4)所示的结果。)所示的结果。A AC CB B图图1B

    3、BA AC C图图2BABAC C图图3BACBAC图图4例例1 1、求证:三角形三个内角的和等于、求证:三角形三个内角的和等于180.180.112ABD23C12实验实验2 2:将纸片三角形顶角剪下,随意将它们将纸片三角形顶角剪下,随意将它们拼凑在一起。拼凑在一起。在证明三角形内角和时,小明在证明三角形内角和时,小明的想法是把三个角的想法是把三个角“凑凑”到到A A处,处,他过点他过点A A作直线作直线DEDE/BC/BC,(如,(如图)。他的想法可行吗?图)。他的想法可行吗?ABCED证明过点证明过点A A作作DEDEBC.BC.则则CCCAECAE,BBBADBAD(两直线平行,内错角

    4、相等两直线平行,内错角相等)BAC+B+CBAC+B+CBAC+BAD+CAEBAC+BAD+CAEDAEDAE180180(平角的定义平角的定义)你还有其他的证明方法么?你还有其他的证明方法么?辅助线辅助线已知:如图,已知:如图,ABC.求证:求证:+180180ABC12DE证明证明:作作BCBC的延长线的延长线CDCD,过点,过点C C作射线作射线CECE/AB/AB,则,则 11(两直线平行,内错角相等两直线平行,内错角相等)22(两直线平行,同位角相等两直线平行,同位角相等)1+2+1+2+180180 +180180ABCE图图1EABCDF图图2ANBCTS图图3PQRMANBC

    5、TS图图4PQRM关于辅助线:关于辅助线:3 3、添加辅助线,可构造新图形,形成新关系,找到联系、添加辅助线,可构造新图形,形成新关系,找到联系已知与未知的桥梁,把问题转化,但辅助线的添法没有已知与未知的桥梁,把问题转化,但辅助线的添法没有一定的规律,要根据需要而定一定的规律,要根据需要而定,平时做题时要注意总结平时做题时要注意总结.2 2、它的作用是把分散的条件集中,把隐含的条件显、它的作用是把分散的条件集中,把隐含的条件显现出来,起到牵线搭桥的作用现出来,起到牵线搭桥的作用.1 1、辅助线是为了证明需要在原图上添画的线、辅助线是为了证明需要在原图上添画的线.(辅助线(辅助线通常画成虚线)通

    6、常画成虚线)三角形内角和定理:三角形内角和定理:三角形的三个内角的和等于三角形的三个内角的和等于180180.三角形的一个外角等于和它不相邻的两个内角的和三角形的一个外角等于和它不相邻的两个内角的和.三角形的一个外角大于任何一个和它不相邻的内角三角形的一个外角大于任何一个和它不相邻的内角.推论:推论:已知:已知:求证:求证:证明:证明:如图,如图,ACDACD是是ABCABC的一个外角的一个外角ACD=A+BACD=A+BABCD1 1、三角形内角和定理、三角形内角和定理 三角形三个内角的和等于三角形三个内角的和等于1801800 0.ABCABC中中,A+B+C=180A+B+C=1800

    7、0.ABC3 3、三角形的一个外角大于任何、三角形的一个外角大于任何一个和它不相邻的内角一个和它不相邻的内角2 2、三角形的一个外角等于和它、三角形的一个外角等于和它不相邻的两个内角的和不相邻的两个内角的和A AB BC C1 12 2D DE E1+2 1+2 +ACDACD A,ACDA,ACD BB三角形内角和定理的几何表述:三角形内角和定理的几何表述:1 1、在、在ABCABC中,以中,以A A为顶点的一个外角为为顶点的一个外角为120120,B=50B=50,则,则C=C=,请说明理由,请说明理由.2 2、如图,比较、如图,比较11与与2+32+3的大小,并证明你的判断的大小,并证明

    8、你的判断.ABCD7070BACDE123做一做做一做 例例2 2、已知:如图,、已知:如图,ADAD是是BACBAC的平分线,的平分线,BCADBCAD于点于点O O,ACDCACDC于点于点C.C.求证:求证:(1)(1)ABCABC是等腰三角形是等腰三角形ABCDO(2)D=B(2)D=B;BDCAO证明:(证明:(1 1)ADAD是是BACBAC的平分线(已知)的平分线(已知)BAOBAOCAOCAO(角平分线的定义)(角平分线的定义).BCADBCAD(已知),(已知),AOBAOBAOCAOCRtRt(垂线的定义垂线的定义).).又又AOAOAOAO(公共边),(公共边),ABOA

    9、BOACOACO(ASAASA).ABABACAC(全等三角形的对应边相等)(全等三角形的对应边相等).ABCABC是等腰三角形(等腰三角形的定义)是等腰三角形(等腰三角形的定义)(2 2)ACDCACDC(已知),(已知),D+CADD+CAD9090(直角三角形的两个锐角互余直角三角形的两个锐角互余).BCADBCAD(已知),(已知),B+BADB+BAD9090(直角三角形的两个锐角互余直角三角形的两个锐角互余).BADBADCADCAD(角平分线的定义),(角平分线的定义),B BDD(等角的余角相等)(等角的余角相等).ABCD已知:如图,已知:如图,ADAD是是BACBAC的平分

    10、线,的平分线,BCADBCAD于点于点O.O.求证:求证:ABCABC是等腰三角形;是等腰三角形;证明命题:证明命题:如果三角形的一个内角的平分线垂直对如果三角形的一个内角的平分线垂直对边,那么这个三角形是等腰三角形边,那么这个三角形是等腰三角形.练一练练一练1 1、已知,如图,、已知,如图,ADAD是是ABCABC的高的高.求证:求证:B+BADB+BADC+CAD.C+CAD.ABDC2 2、已知:如图,、已知:如图,A A,C C是线段是线段BDBD的垂直平分的垂直平分线上的任意两点线上的任意两点.求证:求证:ABCABCADCADCBDCA练一练练一练练一练练一练3 3、已知:如图,、

    11、已知:如图,ABCABCBADBAD,BCBC与与ADAD交于点交于点O O。求证:求证:OC=ODOC=ODA AO OD DC CB B4 4、如图,在、如图,在RtRtABCABC中,中,C=RtC=Rt,B=50B=500 0,把,把ABCABC绕点绕点A A按顺时针方向旋转按顺时针方向旋转30300 0,得,得DAEDAE,DEDE交交ABAB于点于点F F,求,求BFDBFD的度数。的度数。A AF FE ED DC CB B本节课你学到什么本节课你学到什么?已知命题:如图,点已知命题:如图,点A A,D D,B B,E E在同一直在同一直线上,且线上,且ADADBEBE,ACDFACDF,则,则ABCABCDEF.DEF.这个命题是真命题还是假命题?这个命题是真命题还是假命题?ADBECF如果是真命题,请给出证明;如果是真命题,请给出证明;如果是假命题,请添加适当的条件,使它成为如果是假命题,请添加适当的条件,使它成为真命题真命题.你有几种不同的添加方法?你有几种不同的添加方法?

    展开阅读全文
    提示  163文库所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
    关于本文
    本文标题:4.2 证明(2).ppt
    链接地址:https://www.163wenku.com/p-6157673.html

    Copyright@ 2017-2037 Www.163WenKu.Com  网站版权所有  |  资源地图   
    IPC备案号:蜀ICP备2021032737号  | 川公网安备 51099002000191号


    侵权投诉QQ:3464097650  资料上传QQ:3464097650
       


    【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。

    163文库