书签 分享 收藏 举报 版权申诉 / 32
上传文档赚钱

类型211指数与指数幂的运算课件.ppt

  • 上传人(卖家):ziliao2023
  • 文档编号:6146790
  • 上传时间:2023-06-03
  • 格式:PPT
  • 页数:32
  • 大小:1.16MB
  • 【下载声明】
    1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
    2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
    3. 本页资料《211指数与指数幂的运算课件.ppt》由用户(ziliao2023)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
    4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
    5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
    配套讲稿:

    如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。

    特殊限制:

    部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。

    关 键  词:
    211 指数 运算 课件
    资源描述:

    1、2.1.12.1.1指数与指数幂的运算指数与指数幂的运算主页主页教学目的:(1)掌握根式的概念;(2)规定分数指数幂的意义;(3)学会根式与分数指数幂之间的相互转化;(4)理解有理指数幂的含义及其运算性质;(5)了解无理数指数幂的意义2.1.12.1.1指数与指数幂的运算指数与指数幂的运算主页主页 教学重点:分数指数幂的意义,根式与分数指分数指数幂的意义,根式与分数指数幂之间的相互转化,有理指数幂的运算性质数幂之间的相互转化,有理指数幂的运算性质 教学难点:根式的概念,根式与分数指数幂之根式的概念,根式与分数指数幂之间的相互转化,了解无理数指数幂间的相互转化,了解无理数指数幂 问题问题:当生物

    2、体死亡后当生物体死亡后,它机体内原有的碳它机体内原有的碳14会会按确定的规律衰减按确定的规律衰减,大约每经过大约每经过5730年衰减为原年衰减为原来的一半来的一半,这个时间称为这个时间称为“半衰期半衰期”.根据此规根据此规律律,人们获得了生物体内含量人们获得了生物体内含量P与死亡年数与死亡年数t之间之间的关系的关系,这个关系式应该怎样表示呢这个关系式应该怎样表示呢我们可以先来考虑这样的问题我们可以先来考虑这样的问题:(1)当生物体死亡了当生物体死亡了5730,57302,57303,年后年后,它体内碳它体内碳14的含量的含量P分别为原来的多少分别为原来的多少?1,221(),231(),.2(

    3、2)当生物体死亡了当生物体死亡了6000年年,10000年年,100000年年后后,它体内碳它体内碳14的含量的含量P分别为原来的多少分别为原来的多少?600057301(),210000057301(),.21000057301(),2(3)由以上的实例来推断关系式应该是什么由以上的实例来推断关系式应该是什么?57301().2tP 考古学家根据上式可以知道考古学家根据上式可以知道,生物死亡生物死亡t年年后后,体内碳体内碳14的含量的含量P的值的值.(4)那么这些数那么这些数 的意义究竟的意义究竟是什么呢是什么呢?它和我们初中所学的指数有什么区它和我们初中所学的指数有什么区别别?600010

    4、00030000573057305730111(),(),()222这里的指数是分数的形式这里的指数是分数的形式.指数可以取分数吗指数可以取分数吗?除了分数还可以取除了分数还可以取其它的数吗其它的数吗?我们对于数的认识规律是怎样我们对于数的认识规律是怎样的的?自然数自然数 整数整数 分数分数(有理数有理数)实数实数.关系式关系式 就会成为我们后面将要相继就会成为我们后面将要相继 为了能更好地研究指数函数为了能更好地研究指数函数,我们有必我们有必要认识一下指数概念的扩充和完善过程要认识一下指数概念的扩充和完善过程,这这就是下面三节课将要研究的内容就是下面三节课将要研究的内容:57301()2tP

    5、 (5)指数能否取分数指数能否取分数(有理数有理数)、无理数呢、无理数呢?如如果能,那么在脱离开上面这个具体问题以后果能,那么在脱离开上面这个具体问题以后,从今天开始从今天开始,我们学习指数与指数幂的运我们学习指数与指数幂的运算算.研究的一类基本初等函数研究的一类基本初等函数“指数函数指数函数”的的一个具体模型一个具体模型.22=4(-2)2=4 回顾初中知识回顾初中知识,根式是如何定义的?有根式是如何定义的?有那些规定?那些规定?如果一个数的平方等于如果一个数的平方等于a,则这个数叫做则这个数叫做 a的平方根的平方根.如果一个数的立方等于如果一个数的立方等于a,则这个数叫做则这个数叫做a 的

    6、立方根的立方根.2,-2叫叫4的平方根的平方根.2叫叫8的立方根的立方根.-2叫叫-8的立方根的立方根.23=8(-2)3=-8根式根式24=16(-2)4=162,-2叫叫16的的4次方根次方根;2叫叫32的的5次方根次方根;2叫叫a的的n次方根次方根;x叫叫a的的n次方根次方根.xn=a2n=a25=32通过通过方法,可得方法,可得n次方根的定义次方根的定义.1.方根的定义方根的定义 如果如果xn=a,那么那么x叫做叫做 a 的的n次方根次方根(n th rootn th root),其中其中n1,且且nN*.24=16(-2)4=1616的的4次方根是次方根是2.(-2)5=-32-32

    7、的的5次方根是次方根是-2.2是是128的的7次方根次方根.27=128即即 如果一个数的如果一个数的n次方等于次方等于a(n1,且,且nN*),那么这个数叫做,那么这个数叫做 a 的的n次方根次方根.【1】试根据试根据n次方根的定义分别求出下次方根的定义分别求出下列各数的列各数的n次方根次方根.(1)25的平方根是的平方根是_;(2)27的三次方根是的三次方根是_;(3)-32的五次方根是的五次方根是_;(4)16的四次方根是的四次方根是_;(5)a6的三次方根是的三次方根是_;(6)0的七次方根是的七次方根是_.点评点评:求一个数求一个数a的的n次方根就是求出次方根就是求出哪个数哪个数的的

    8、n次方等于次方等于a.53-220a223=8(-2)3=-8(-2)5=-32 27=1288的的3次方根是次方根是2.-8的的3次方根是次方根是-2.-32的的5次方根是次方根是-2.128的的7次方根是次方根是2.奇次方根奇次方根 1.正数的奇次方根是一个正数正数的奇次方根是一个正数,2.负数的奇次方根是一个负数负数的奇次方根是一个负数.nana的的 次次方方根根(奇奇用用符符号号次次)表表示示.382.记记作作:382.记记作作:5322.记记作作:71282.记记作作:72=49(-7)2=4934=81(-3)4=8149的的2次方根是次方根是7,-7.81的的4次方根是次方根是3

    9、,-3.偶次方根偶次方根 2.负数的偶次方根没有意义负数的偶次方根没有意义 1.正数的偶次方根有两个且互为相反数正数的偶次方根有两个且互为相反数 想一想想一想:哪个数的平方为负数?哪个数的偶次哪个数的平方为负数?哪个数的偶次方为负数?方为负数?记记作作:497 记记作作:4813 (nanan 正正数数 的的 次次方方根根用用符符号号表表示示为为偶偶数数)26=64(-2)6=6464的的6次方根是次方根是2,-2.记记作作:6642.正数的奇次方根是正数正数的奇次方根是正数.负数的奇次方根是负数负数的奇次方根是负数.零的奇次方根是零零的奇次方根是零.(1)奇次方根有以下性质:奇次方根有以下性

    10、质:,21,N,0,2,N.nnankkxnaak k 那么那么如果如果,axn(2)偶次方根有以下性质:偶次方根有以下性质:正数的偶次方根有两个且是相反数,正数的偶次方根有两个且是相反数,负数没有偶次方根,负数没有偶次方根,零的偶次方根是零零的偶次方根是零.nana 根指数根指数根式根式被开方数被开方数 由由xn=a 可知,可知,x叫做叫做a的的n次方根次方根.233(9)_,(8)_.9-8 当当n是奇数时是奇数时,对任意对任意a R都有意义都有意义.它表它表示示a在实数范围内唯一的一个在实数范围内唯一的一个n次方根次方根.()nnaa na 当当n是偶数时是偶数时,只有当只有当a0有意义

    11、有意义,当当a0).,33223aaaaaa;272132133aaaaaa;38322322322aaaaaa.)()(32213421313aaaaaa无理指数幂无理指数幂探究:在前面的学习中,我们已经把指数由正整数推广到了有理数,那么,能不能继续推广到实数范围呢?a0,p是一个无理数时,ap的值就可以用两个指数为p的不足近似值和过剩近似值构成的有理数列无限逼近而得到(这个近似结果的极限值就等于ap),故ap是一个确定的实数.而且有理数指数幂的运算性质对于无理数指数幂也适用.这样指数的概念就扩充到了整个实数范围.知识总结知识总结整数指数幂有理数指数幂无理数指数幂分数指数幂根式两个等式),0,0()(3(),0()(2(),0()1(RrbabaabRsraaaRsraaaarrrrssrsrsr

    展开阅读全文
    提示  163文库所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
    关于本文
    本文标题:211指数与指数幂的运算课件.ppt
    链接地址:https://www.163wenku.com/p-6146790.html

    Copyright@ 2017-2037 Www.163WenKu.Com  网站版权所有  |  资源地图   
    IPC备案号:蜀ICP备2021032737号  | 川公网安备 51099002000191号


    侵权投诉QQ:3464097650  资料上传QQ:3464097650
       


    【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。

    163文库