《曲边梯形的面积》教学设计及教学反思参考模板范本.doc
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《《曲边梯形的面积》教学设计及教学反思参考模板范本.doc》由用户(林田)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 曲边梯形的面积 梯形 面积 教学 设计 反思 参考 模板 范本
- 资源描述:
-
1、曲边梯形的面积教学设计及教学反思一、教学过程回顾本节课是人教A版选修2-2第一章第五节定积分的概念的起始课曲边梯形的面积是定积分概念的几何背景,求曲边梯形面积的过程蕴涵着定积分的基本思想方法,为引入定积分的概念和体会定积分的基本思想奠定基础. 学生在本节课学习中将会面临两个难点:一是如何“以直代曲”,即学生如何将割圆术中“以直代曲,近似代替”的思想灵活地迁移到一般的曲边梯形上具体说来就是:如何选择适当的直边图形(矩形、三角形或梯形)代替曲边梯形,并使细分的过程程序化且便于操作和计算。二是对“极限”和“无限逼近”的理解,即理解为什么将直边图形面积和取极限正好是曲边梯形面积的精确值。1、 导入新课
2、:问题引入,明确主题。问题1:我们在以前的学习经历中有没有用直边图形的面积计算曲边图形面积这样的例子?问题2:在割圆术中为什么用正多边形的面积计算圆的面积?为什么要逐次加倍正多边形的边数?设计意图:通过问题1引导学生回忆割圆术的作法,通过问题2并结合计算机模拟割圆术, 引导学生思考割圆术中的思想方法“以直代曲”和“无限逼近”2、进入新课:类比迁移,分组探究。问题3:能不能类比割圆术的思想和操作方法把曲边梯形的面积问题转化为直边图形的面积问题?进而尽可能有规律地减小误差,使得直边图形的面积越来越接近曲边梯形的面积? 设计意图:通过问题3让学生有的放矢,明确解决问题的方向通过分组探究发挥学生的主观
3、能动性由于在一般的曲边梯形中不能构造出正多边形这么规则的图形,所以不能简单地模仿割圆术的作法,需要在理解割圆术思想的前提下灵活地迁移和应用3、突破重难点:特例应用,细化操作。首先给出具体问题:如何求由直线所围成的曲边梯形的面积?针对这个具体问题,设计了以下几个问题: 问题1:为了逐步减小误差,需要对曲边梯形进行分割,具体怎样分割?问题2:对每个小曲边梯形如何以直代曲?问题3:如何得到整个曲边梯形的近似值?设计意图:分割和近似代替的方案在前面一个阶段已经解决,问题13主要是引导学生在具体问题中对方案进行细化操作,初步经历分割、近似代替及求和的过程问题4:直边图形的面积和怎样才能越来越接近曲边梯形
4、面积的准确值?能否得到准确值?.图形方式用几何画板动态演示矩形不足近似和矩形过剩近似的逼近过程,让学生从图形上直观地感知:当越来越大,分割越来越细时,两种方案面积的近似值越来越接近准确值.数表方式借助计算机计算两种方案的近似值,观察两个近似值在越来越大时的变化趋势,发现两个近似值都越来越接近于一个常数问题5:从图形直观上和数值的变化趋势上,我们发现:当无限增大时,近似值会无限接近于一个常数,这个常数就是曲边梯形面积的精确值那我们能不能直接从近似值的代数表达式中直接得到这一结论呢?.取极限的方式设计意图:这是本节课的难点之一,教学中先分别用图形、数表两种方式呈现逐渐细分和无限逼近的过程,再在此基
展开阅读全文