书签 分享 收藏 举报 版权申诉 / 10
上传文档赚钱

类型最新人教版八年级下册数知识点总结归纳.docx

  • 上传人(卖家):最好的沉淀
  • 文档编号:6133131
  • 上传时间:2023-06-01
  • 格式:DOCX
  • 页数:10
  • 大小:88.96KB
  • 【下载声明】
    1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
    2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
    3. 本页资料《最新人教版八年级下册数知识点总结归纳.docx》由用户(最好的沉淀)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
    4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
    5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
    配套讲稿:

    如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。

    特殊限制:

    部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。

    关 键  词:
    新人 教版八 年级 下册 知识点 总结 归纳
    资源描述:

    1、新人教版八年级下册数学知识点总结归纳期末总复习一、 第十六章 二次根式 【知识回顾】 :1.二次根式:式子(a 0)叫做二次根式。2.最简二次根式:必须同时满足下列条件: 被开方数中不含开方开的尽的因数或因式; 被开方数中不含分母; 分母中不含根式。3.同类二次根式: 二次根式化成最简二次根式后,若被开方数相同,则这几个二次根式就是同类二次根式。4.二次根式的性质: (1)(1)()=(0);(2)5.二次根式的运算: (1)因式的外移和内移:如果被开方数中有的因式能够开得尽方,那么,就可以用它的算术根代替而移到根号外面;如果被开方数是代数和的形式,那么先解因式,变形为积的形式,再移因式到根号

    2、外面,反之也可以将根号外面的正因式平方后移到根号里面 (2)二次根式的加减法:先把二次根式化成最简二次根式再合并同类二次根式 (3)二次根式的乘除法:二次根式相乘(除),将被开方数相乘(除),所得的积(商)仍作积(商)的被开方数并将运算结果化为最简二次根式=(a0,b0);(b0,a0)(4)有理数的加法交换律、结合律,乘法交换律及结合律,乘法对加法的分配律以及多项式的乘法公式,都适用于二次根式的运算二、第十七章勾股定理 归纳总结1.勾股定理:如果直角三角形的两直角边长分别为a,b,斜边长为c,那么应用:(1)已知直角三角形的两边求第三边(在中,则,)(2)已知直角三角形的一边与另两边的关系,

    3、求直角三角形的另两边。2、勾股定理逆定理:如果三角形三边长a,b,c满足那么这个三角形是直角三角形。应用: 勾股定理的逆定理是判定一个三角形是否是直角三角形的一种重要方法。(定理中,及只是一种表现形式,不可认为是唯一的,如若三角形三边长,满足,那么以,为三边的三角形是直角三角形,但是为斜边)3、勾股数能够构成直角三角形的三边长的三个正整数称为勾股数,即中,为正整数时,称,为一组勾股数记住常见的勾股数可以提高解题速度,如3,4,5;6,8,10;5,12,13;7,24,25等4.直角三角形的性质(1)直角三角形的两个锐角互余。可表示如下:C=90A+B=90(2)在直角三角形中,30角所对的直

    4、角边等于斜边的一半。A=30BC=ABC=90(3)、直角三角形斜边上的中线等于斜边的一半ACB=90CD=AB=BD=ADD为AB的中点5、常用关系式 由三角形面积公式可得:AB .CD=AC.BC6、直角三角形的判定 (1)、有一个角是直角的三角形是直角三角形。 (2)、如果三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形。7、三角形中的中位线 连接三角形两边中点的线段叫做三角形的中位线。 (1)三角形共有三条中位线,并且它们又重新构成一个新的三角形。 (2)要会区别三角形中线与中位线。 三角形中位线定理:三角形的中位线平行于第三边,并且等于它的一半。 三角形中位线定理的作用:

    5、 位置关系:可以证明两条直线平行。 数量关系:可以证明线段的倍分关系。常用结论:任一个三角形都有三条中位线,由此有:结论1:三条中位线组成一个三角形,其周长为原三角形周长的一半。结论2:三条中位线将原三角形分割成四个全等的三角形。结论3:三条中位线将原三角形划分出三个面积相等的平行四边形。结论4:三角形一条中线和与它相交的中位线互相平分。结论5:三角形中任意两条中位线的夹角与这夹角所对的三角形的顶角相等。8、命题、定理、证明1、命题的概念 判断一件事情的语句,叫做命题。 理解:命题的定义包括两层含义: (1)命题必须是个完整的句子; (2)这个句子必须对某件事情做出判断。2、命题的定义包括两层

    6、含义: (1)命题必须是个完整的句子; (2)这个句子必须对某件事情做出判断。3、命题的分类(按正确、错误与否分) 真命题(正确的命题) 命题 假命题(错误的命题) .所谓正确的命题就是:如果题设成立,那么结论一定成立的命题。 所谓错误的命题就是:如果题设成立,不能证明结论总是成立的命题。4、公理 人们在长期实践中总结出来的得到人们公认的真命题,叫做公理。5、定经过证明被确认正确的命题叫做定理。 我们把题设、结论正好相反的两个命题叫做互逆命题。如果把其中一个叫做原命题,那么另一个叫做它的逆命题。(例:勾股定理与勾股定理逆定理)6、证明 判断一个命题的正确性的推理过程叫做证明。7、证明的一般步骤

    7、 (1)根据题意,画出图形。 (2)根据题设、结论、结合图形,写出已知、求证。 (3)经过分析,找出由已知推出求证的途径,写出证明过程。第十八章四边形 四边形 1四边形的内角和与外角和定理: (1)四边形的内角和等于360; (2)四边形的外角和等于360. 2多边形的内角和与外角和定理: (1)n边形的内角和等于(n-2)180; (2)任意多边形的外角和等于360. 1、定义:两组对边分别平行的四边形是平行四边形2平行四边形的性质角:平行四边形的邻角互补,对角相等;边:平行四边形两组对边分别平行且相等;对角线:平行四边形的对角线互相平分;面积:S=底高=ah;3平行四边形的判定方法:两组对

    8、边分别平行的四边形是平行四边形;两组对边分别相等的四边形是平行四边形;一组平行且相等的四边形是平行四边形;两组对角分别相等的四边形是平行四边形;3对角线互相平分的四边形是平行四边形;二、3特殊的平行四边形(一)矩形1、矩形的定义:有一个角是直角的平行四边形是矩形2、矩形的性质边:对边平行且相等;角:对角相等、邻角互补;对角线:对角线互相平分且相等;3、矩形的判定:四边形ABCD是矩形.(二)菱形1、定义:有一组邻边相等的平行四边形是菱形。2、菱形的性质:边:四条边都相等;角:对角相等、邻角互补;对角线:对角线互相垂直平分且每条对角线平分每组对角;3、菱形的判定方法:四边形四边形ABCD是菱形.

    9、(三)正方形1、定义:有一组邻边相等且有一个直角的平行四边形叫做正方形2、正方形的性质:边:四条边都相等;角:四角都是直角;对角线:对角线互相垂直平分且相等,每条对角线平分每组对角。3、正方形的判定方法:四边形ABCD是正方形.(四)三角形中位线定理:三角形的中位线平行第三边,并且等于它的一半.如图:DE是ABC的中位线DEBC,DE=BC(五)几种特殊四边形的面积问题设矩形ABCD的两邻边长分别为,b,则=ab设菱形ABCD的一边长为a,高为h,则S菱形=ah;若菱形的两对角线的长分别为,,则=设正方形ABCD的一边长为,则;若正方形的对角线的长为,则 14三角形中位线定理: 三角形的中位线

    10、平行第三边,并且等于它的一半. 15梯形中位线定理: 梯形的中位线平行于两底,并且等于两底和的一半. 一基本概念:四边形,四边形的内角,四边形的外角,多边形,平行线间的距离,平行四边形,矩形,菱形,正方形,中心对称,中心对称图形,梯形,等腰梯形,直角梯形,三角形中位线,梯形中位线. 二定理:中心对称的有关定理 1关于中心对称的两个图形是全等形. 2关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分. 3如果两个图形的对应点连线都经过某一点,并且被这一点平分,那么这两个图形关于这一点对称. 三 公式: 1S菱形 = ab=ch.(a、b为菱形的对角线 ,c为菱形的边长 ,h为c

    11、边上的高) 2S平行四边形 =ah. a为平行四边形的边,h为a上的高) 3S梯形 = (a+b)h=Lh.(a、b为梯形的底,h为梯形的高,L为梯形的中位线) 四 常识: 1若n是多边形的边数,则对角线条数公式是: . 2规则图形折叠一般“出一对全等,一对相似”. 3如图:平行四边形、矩形、菱形、正方形的从属关系. 4常见图形中,仅是轴对称图形的有:角、等腰三角形、等边三角形、正奇边形、等腰梯形 ;仅是中心对称图形的有:平行四边形 ;是双对称图形的有:线段、矩形、菱形、正方形、正偶边形、圆 .注意:线段有两条对称轴.第十九章一次函数一.常量、变量: 在一个变化过程中,数值发生变化的量叫做 变

    12、量 ;数值始终不变的量叫做 常量 。二、函数的概念: 函数的定义:一般的,在一个变化过程中,如果有两个变量x与y,并且对于x的每一个确定的值,y都有唯一确定的值与其对应,那么我们就说x是自变量,y是x的函数三、函数中自变量取值范围的求法: (1)用整式表示的函数,自变量的取值范围是全体实数。 (2)用分式表示的函数,自变量的取值范围是使分母不为0的一切实数。 (3)用奇次根式表示的函数,自变量的取值范围是全体实数。 用偶次根式表示的函数,自变量的取值范围是使被开方数为非负数的一 切实数。 (4)若解析式由上述几种形式综合而成,须先求出各部分的取值范围,然后再求其公共范围,即为自变量的取值范围。

    13、 (5)对于与实际问题有关系的,自变量的取值范围应使实际问题有意义。四、 函数图象的定义:一般的,对于一个函数,如果把自变量与函数的每对对应值分别作为点的横、纵坐标,那么在坐标平面内由这些点组成的图形,就是这个函数的图象 五、用描点法画函数的图象的一般步骤 1、列表(表中给出一些自变量的值及其对应的函数值。) 注意:列表时自变量由小到大,相差一样,有时需对称。 2、描点:(在直角坐标系中,以自变量的值为横坐标,相应的函数值为纵坐标,描出表格中数值对应的各点。 3、连线:(按照横坐标由小到大的顺序把所描的各点用平滑的曲线连接起来)。六、函数有三种表示形式: (1)列表法 (2)图像法 (3)解析

    14、式法七、正比例函数与一次函数的概念: 一般地,形如y=kx(k为常数,且k0)的函数叫做正比例函数.其中k叫做比例系数。 一般地,形如y=kx+b (k,b为常数,且k0)的函数叫做一次函数. 当b =0 时,y=kx+b 即为 y=kx,所以正比例函数,是一次函数的特例.八、正比例函数的图象与性质: (1)图象:正比例函数y= kx (k 是常数,k0) 的图象是经过原点的一条直线,我们称它为直线y= kx 。 (2)性质:当k0时,直线y= kx经过第三,一象限,从左向右上升,即随着x的增大y也增大;当k0,b0图像经过一、二、三象限; (2)k0,b0图像经过一、三、四象限; (3)k0

    15、,b0 图像经过一、三象限; (4)k0,b0图像经过一、二、四象限;(5)k0,b0图像经过二、三、四象限; (6)k0,b0图像经过二、四象限。 一次函数表达式的确定 求一次函数y=kx+b(k、b是常数,k0)时,需要由两个点来确定;求正比例函数y=kx(k0)时,只需一个点即可.九、求函数解析式的方法: 待定系数法:先设出函数解析式,再根据条件确定解析式中未知的系数,从而具体写出这个式子的方法。 1. 一次函数与一元一次方程:从“数”的角度看x为何值时函数y= ax+b的值为0 2. 求ax+b=0(a, b是常数,a0)的解,从“形”的角度看,求直线y= ax+b与 x 轴交点的横坐

    16、标 3. 一次函数与一元一次不等式: 解不等式ax+b0(a,b是常数,a0) 从“数”的角度看,x为何值时函数y= ax+b的值大于0 4. 解不等式ax+b0(a,b是常数,a0) 从“形”的角度看,求直线y= ax+b在 x 轴上方的部分(射线)所对应的的横坐标的取值范围十、一次函数与正比例函数的图象与性质 一次函数概念如果y=kx+b(k、b是常数,k0),那么y叫x的一次函数.当b=0时,一次函数y=kx(k0)也叫正比例函数. 图像是一条直线:性质 k0时,y随x的增大(或减小)而增大(或减小); k0时,y随x的增大(或减小)而减小(或增大). 直线y=kx+b(k0)的位置与k

    17、、b符号之间的关系. 十一、(1)k0,b0图像经过一、二、三象限; (2)k0,b0图像经过一、三、四象限; (3)k0,b0图像经过一、三象限; (4)k0,b0图像经过一、二、四象限; (5)k0,b0图像经过二、三、四象限; (6)k0,b0图像经过二、四象限。 一次函数表达式的确定 求一次函数y=kx+b(k、b是常数,k0)时,需要由两个点来确定;求正比例函数y=kx(k0)时,只需一个点即可.第二十章数据的分析数据的代表:平均数、众数、中位数、极差、方差1解统计学的几个基本概念 总体、个体、样本、样本容量是统计学中特有的规定,准确把握教材,明确所考查的对象是解决有关总体、个体、样

    18、本、样本容量问题的关键。一:5个基本统计量(平均数、众数、中位数、极差、方差)的数学内涵:平均数:把一组数据的总和除以这组数据的个数所得的商。平均数反映一组数据的平均水平,平均数分为算术平均数和加权平均数。众数:在一组数据中,出现次数最多的数(有时不止一个),叫做这组数据的众数中位数:将一组数据按大小顺序排列,把处在最中间的一个数(或两个数的平均数)叫做这组数据的中位数极差:是指一组数据中最大数据与最小数据的差。巧计方法,极差=最大值-最小值。方差:各个数据与平均数之差的平方的平均数,记作s2 .巧计方法:方差是偏差的平方的平均数。 标准差:方差的算术平方根,记作s 。 4.极差用一组数据中的最大值减去最小值所得的差来反映这组数据的变化范围,用这种方法得到的差称为极差,极差最大值最小值。 5.方差用“先平均,再求差,然后平方,最后再平均”得到的结果表示一组数据偏离平均值的情况,这个结果叫方差,计算公式是 s2= (x1- )2+(x2- )2+(xn- )2; 方差是反映一组数据的波动大小的一个量,其值越大,波动越大,也越不稳定或不整齐。

    展开阅读全文
    提示  163文库所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
    关于本文
    本文标题:最新人教版八年级下册数知识点总结归纳.docx
    链接地址:https://www.163wenku.com/p-6133131.html

    Copyright@ 2017-2037 Www.163WenKu.Com  网站版权所有  |  资源地图   
    IPC备案号:蜀ICP备2021032737号  | 川公网安备 51099002000191号


    侵权投诉QQ:3464097650  资料上传QQ:3464097650
       


    【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。

    163文库