单调性高一数学函数的基本性质课件.ppt
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《单调性高一数学函数的基本性质课件.ppt》由用户(ziliao2023)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 调性 数学 函数 基本 性质 课件 下载 _其他_数学_高中
- 资源描述:
-
1、优秀课件1函数的基本性质函数的基本性质单调性单调性1.3 1.3 函数的基本性质函数的基本性质优秀课件267.456.771.1960.3319851990 19941997长沙市年生产总值统计表长沙市年生产总值统计表生产总值生产总值(亿元亿元)年份年份302010优秀课件379.1013.1204.1438.151985199010155 长沙市高等学校在校学生数统计表长沙市高等学校在校学生数统计表 人数人数(万人万人)年份年份19941997优秀课件442335920917619851990 19941997450150250350人数人数(人人)长沙市日平均出生人数统计表长沙市日平均出生
2、人数统计表年份年份优秀课件596.3332.3278.3080.29长沙市耕地面积统计表长沙市耕地面积统计表198519901994199728303234 面积面积(万公顷万公顷)年份年份优秀课件6yx1 1-1Oyx优秀课件7xy21xy21yx1 1-1OOyxy2x2 优秀课件8xy21xy21yx1 1-1y21OOOyyxxy2x2 yx22x 优秀课件9xy21xy21yxOxy1 yx1 1-1y21OOOyyxxy2x2 yx22x 优秀课件10 xy2xy O优秀课件111x)(1xfxy2xy O优秀课件121x)(1xfxy2xy O优秀课件1301x)(1xfxy2x
3、y O优秀课件141x)(1xfxy2xy O优秀课件151x)(1xfxy2xy O优秀课件161x)(1xfxy2xy O优秀课件171x)(1xfxy2xy O优秀课件181x)(1xfxy2xy O优秀课件191x)(1xfxy2xy O优秀课件20如何用如何用x与与f(x)来描述上升的图象?来描述上升的图象?Oxy优秀课件21如何用如何用x与与f(x)来描述上升的图象?来描述上升的图象?Oxy优秀课件22如何用如何用x与与f(x)来描述上升的图象?来描述上升的图象?Oxy优秀课件23如何用如何用x与与f(x)来描述上升的图象?来描述上升的图象?x2x1Oxyx1x2优秀课件24如何用
4、如何用x与与f(x)来描述上升的图象?来描述上升的图象?x2x1Oxyyf(x)x1x2优秀课件25如何用如何用x与与f(x)来描述上升的图象?来描述上升的图象?x2x1Oxyyf(x)f(x1)f(x2)x1x2优秀课件26如何用如何用x与与f(x)来描述上升的图象?来描述上升的图象?x2x1Oxyyf(x)f(x1)f(x2)x1x2优秀课件27如何用如何用x与与f(x)来描述上升的图象?来描述上升的图象?x2x1Oxyyf(x)f(x1)f(x2)x1x2 f(x1)f(x2)优秀课件28如何用如何用x与与f(x)来描述上升的图象?来描述上升的图象?x2x1Oxyyf(x)f(x1)f(
5、x2)x1x2 f(x1)f(x2)优秀课件29如何用如何用x与与f(x)来描述上升的图象?来描述上升的图象?x2x1Oxyyf(x)f(x1)f(x2)优秀课件30如何用如何用x与与f(x)来描述上升的图象?来描述上升的图象?x2x1Oxyyf(x)f(x1)f(x2)在给定区间上任取在给定区间上任取x1,x2优秀课件31x1x2 f(x1)f(x2)如何用如何用x与与f(x)来描述上升的图象?来描述上升的图象?x2x1Oxyyf(x)f(x1)f(x2)在给定区间上任取在给定区间上任取x1,x2优秀课件32x1x2 f(x1)f(x2)如何用如何用x与与f(x)来描述上升的图象?来描述上升
6、的图象?x2x1Oxyyf(x)f(x1)f(x2)在给定区间上任取在给定区间上任取x1,x2函数函数f(x)在给定在给定区间上为增函数区间上为增函数.优秀课件33x1x2 f(x1)f(x2)如何用如何用x与与f(x)来描述上升的图象?来描述上升的图象?x2x1Oxyyf(x)f(x1)f(x2)在给定区间上任取在给定区间上任取x1,x2如何用如何用x与与f(x)来描述下降的图象?来描述下降的图象?x2x1Oxyyf(x)f(x1)f(x2)函数函数f(x)在给定在给定区间上为增函数区间上为增函数.优秀课件34x1x2 f(x1)f(x2)如何用如何用x与与f(x)来描述上升的图象?来描述上
7、升的图象?x2x1Oxyyf(x)f(x1)f(x2)在给定区间上任取在给定区间上任取x1,x2如何用如何用x与与f(x)来描述下降的图象?来描述下降的图象?x2x1Oxyyf(x)f(x1)f(x2)函数函数f(x)在给定在给定区间上为增函数区间上为增函数.在给定区间上任取在给定区间上任取x1,x2优秀课件35x1x2 f(x1)f(x2)如何用如何用x与与f(x)来描述上升的图象?来描述上升的图象?x2x1Oxyyf(x)f(x1)f(x2)在给定区间上任取在给定区间上任取x1,x2如何用如何用x与与f(x)来描述下降的图象?来描述下降的图象?x2x1Oxyyf(x)f(x1)f(x2)函
8、数函数f(x)在给定在给定区间上为增函数区间上为增函数.x1x2 f(x1)f(x2)在给定区间上任取在给定区间上任取x1,x2优秀课件36x1x2 f(x1)f(x2)如何用如何用x与与f(x)来描述上升的图象?来描述上升的图象?x2x1Oxyyf(x)f(x1)f(x2)在给定区间上任取在给定区间上任取x1,x2如何用如何用x与与f(x)来描述下降的图象?来描述下降的图象?x2x1Oxyyf(x)f(x1)f(x2)函数函数f(x)在给定在给定区间上为增函数区间上为增函数.函数函数f(x)在给定在给定区间上为减函数区间上为减函数.x1x2 f(x1)f(x2)在给定区间上任取在给定区间上任
9、取x1,x2优秀课件37增函数、减函数的概念:增函数、减函数的概念:优秀课件38增函数、减函数的概念:增函数、减函数的概念:一般地,设函数一般地,设函数f(x)的定义域为的定义域为I.优秀课件391.如果对于定义域如果对于定义域I内的某个区间上的任意内的某个区间上的任意两个自变量的值两个自变量的值x1,x2,当,当x1x2时,都有时,都有f(x1)f(x2),那么就说,那么就说f(x)在这个区间上是在这个区间上是增函数增函数.增函数、减函数的概念:增函数、减函数的概念:一般地,设函数一般地,设函数f(x)的定义域为的定义域为I.优秀课件401.如果对于定义域如果对于定义域I内的某个区间上的任意
10、内的某个区间上的任意两个自变量的值两个自变量的值x1,x2,当,当x1x2时,都有时,都有f(x1)f(x2),那么就说,那么就说f(x)在这个区间上是在这个区间上是增函数增函数.2.如果对于定义域如果对于定义域I内的某个区间上的任意内的某个区间上的任意两个自变量的值两个自变量的值x1,x2,当,当x1x2时,都有时,都有f(x1)f(x2),那么就说,那么就说f(x)在这个区间上是在这个区间上是减函数减函数.增函数、减函数的概念:增函数、减函数的概念:一般地,设函数一般地,设函数f(x)的定义域为的定义域为I.优秀课件411.如果对于定义域如果对于定义域I内的某个区间上的任意内的某个区间上的
展开阅读全文