六年级下册数学知识点总结 十、几何初步知识 全国通用.docx
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《六年级下册数学知识点总结 十、几何初步知识 全国通用.docx》由用户(丹乡武阿哥)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 六年级下册数学知识点总结 十、几何初步知识 全国通用 六年级 下册 数学 知识点 总结 几何 初步 知识 全国 通用 下载 _其他_数学_小学
- 资源描述:
-
1、十、几何初步知识279. 什么叫做几何学和几何图形?几何学是数学的一门分科,它是研究物体的形状、大小和相互位置关 系的科学,也就是研究现实客观世界空间形式和数量关系的一门科学。在我们的周围世界里,各种物体都具有形状、大小和相互之间的位置 关系。例如:课桌的桌面是长方形的,魔方的每个面是正方形的,各种车 轮的形状是圆的。魔方有大小之分,魔方的面的大小也是不一样的;汽车 有大小,自行车也有大小,同样是车轮,大小也不相同。还应该看到,物 体与物体之间,有着相互位置关系。例如:上下关系、前后关系和左右关 系等。公元前338年,希腊数学家欧几里得总结了劳动人民在实践中获得的 几何知识,并加以系统整理,按
2、照图形在平面或空间的形式,在几何学中 分岀了 “平面几何”和“立体几何”两个分支。由于几何学是研究物体的形状、大小和相互位置关系的科学,根据研 究结果加以抽象概括,便产生了几何图形。几何图形是由点、线、面结合 而成的,也是点、线、面的集合。一个图形所有的点,都在同一平面内, 这样的图形叫做“平面几何图形”,如长方形、正方形、三角形、梯形和 圆等图形,都是平面几何图形。如果一个图形的点不全在同一平面内,这 个图形就叫做“立体几何图形”,如长方体、圆柱体和圆锥体等图形,都 属于立体几何图形。280. 什么叫做爲线、面、体?点:在平面上只有位置,没有大小(即没有长、宽、高),不可分割 的。线和线相交
3、于一个点。也可以理解为“点”是“线的界限。在几何中,用大写字母表示点。如,图中的A点、B点、C点。线:如果两个面相交,就会交岀一条线来。也就是面和面相交于线。 张纸对折起来的痕迹就是“线。也可以理解为“线”是“面的界限。线有直线和曲线等。如:长方体相邻的两个面相交于一条线(也就是 长方体的一条棱),就是直线。圆柱体的侧面和一个底面相交的一条线, 就是曲线。线只是面与面相交的界限,它没有大小(即粗细),只有长短,或者 说,线只有长,而没有宽和高。面:任何物体都占一定的空间,都是用它的表面和周围分割开来。因 此,可以说“体是由“面围成的。如:课本的封面、黑板的面、粉笔 的截面、水桶的侧面和底面等都
4、是“面。也可以理解为“面是“体” 的界限。由于面是物体的表面,如果放弃物体的本身,只单独想象物体的表面, 这样的面就是几何的面。几何里的面是没有厚度的(即:高),所以,面 只有长和宽,而没有高。体:当我们只研究一个物体的形状、大小而不研究它的其它性质(如 颜色、重量、硬度等)的时候,我们就把这个物体叫做几何体,简称“体“。 例如:一块砖与一个和砖完全一样的纸盒,虽然它们的颜色、重量、硬度 以及制作材料都不同,只要它们的形状、大小都相同,就可以认为它们是 完全相等的两个几何体。就上述的砖和纸盒来说,它们是两个相同的长方 体。281. 直线、射线和线段有什么不同?直线、射线和线段是易于混淆的三个概
5、念,它们之间也是有联系的, 直线是基础,射线和线段是直线概念的发展。它们也是有区别的,这是它 们之间的主要方面。首先看直线,一点在空间沿着一定方向和相反方向运动,所成的图形 就是直线。一张纸的折痕、双手拉紧的线,都给人以直线的形象。我们把 直线看作可以向两方无限延伸的,直线是无头无尾的,即是没有端点的。直线可以用表示它上面任意两点的两个大写字母来表示。例如,直线 AB,或直线BA;也可以用一个小写字母表示一条直线。例如,直线1 (如 下图)。经过一点,可以画无数多条直线,但是,经过两点却只能画岀一条直 线,这就是直线的基本性质。除此之外,两条直线相交,只有一个交点。其次看射线,在直线上某一点一
6、旁的部分叫做射线。这一点叫做射线 的端点。射线的另一端是可以无限延伸的,因此,没有端点。射线只有一 个端点;是一条半直线。类似探照灯光和手电筒所射岀的光线,都可以看 作射线的实际例子。射线通常用表示它的端点和射线上另外一点的两个大写字母来表示, 并且把表示端点的字母写在前面。例如,以点0为端点的射线,可以在射 线上再取一点A,记作:射线0A (如图)。最后再看线段,直线上任意两点间的部分叫做线段。具有一定长度的 拉直了的细绳,可看作线段的实际例子。线段是有长短的,因此可以进行 度量。线段通常用表示它的两个端点的大写字母来表示。例如,线段AB, 或者线段BA。也可以用一个小写字母表示。例如,线段
7、a (如下图)。在连结两点的所有线中,线段最短。这就是线段的基本性质。282. 什么叫做“角” ?几何中所指的角的定义是:从一点画岀的两条射线所组成的图形, 叫做“角”。这里所说的点(即两条射线的端点),叫做角的“顶点”, 构成角的两条射线,叫做角的“边”。角的大小与两边的长短无关,只与角两边的相互位置关系有关。这一 点,在初学时很容易混淆,必须引起注意。角用符号“匕”来表示。如:从图2中可以看到:角也可以看作由一条射线绕着它的端点旋转而成 的。个角一般有以下三种表示方法:(1) 用“匕”与三个大写字母表示角。如:(图4)图3中的角记作:ZAOB;图4中的角记作:ZBOC, ZAOB, ZAO
8、Co(2) 用“匕”与一个大写字母表示角。这里所指的一个大写字母,应该是角顶上的字母。而且这种用一个大 写字母表示角的方法,只适用于单个的角。如图3,用Z0来表示,如果 是具有共同顶点的两个或两个以上的角时,则不能用这种方法来表示角。 如图4,如果用/Q来表示,就表述不清到底/0表示哪个角。(3) 用与一个小写希腊字母或一个数字表示角。例如:下图中下角分别记作:ZK Z2s ZQs ZPo283. 几何中的角可分为哪聞?(1) 周角:一条射线绕着它的端点,按逆时针方向旋转,转到这条 射线回到它的原来的位置时,就形成了一个周角。如图图中的皿绕它的端点0.按逆时针方向旋转,转到这条射线又回来 的位
9、置,形成了一个周角。一个周角等于360 ,个周角是一个平角的 2倍。(2)平角:一条射线绕着它的端点,按逆时针方向旋转,转到和原 来位置成为一条直线,这时所成的角,叫做平角。如图图中的射线0A绕它的端点0,按逆时针方向旋转,转到射线0B的位 置上(射线0A与射线0B构成一条直线),形成一个平角。一个平角等于180度,记作180。(3)优角:一个大于平角又小于周角的角,叫做优角。优角在小学 数学教材中没有岀现,但在教学中常常遇到学生提岀这样的问题:比周角 小又比平角大的角叫什么角? 181。的角是什么角等等。如图优角大于180,小于360。(4)直角:等于平角一半的角,叫做直角。如图直角通常记作
10、“RTN”。直角的大小通常用d来表示,这样,平角等 于2d,周角等于44。(5)钝角:一个比平角小又比直角大的角叫做钝角。如图钝角的度数大于90 ,小于180。(6) 锐角:小于直角的角叫做锐角。如图匕0 A锐角小于90。(7) 余角:当两个锐角ZAOB与ZBOC之和等于一个直角ZAOC时, 其中一个角ZBOC叫做另一个角ZAOB的余角。这两个角叫做互为余角。如图(8) 邻角:当两个角有一个公共的顶点,有一条公共的边,这两个 角另外两条边在公共边的两侧,这两个角叫做互为邻角。如图图中的OC是ZAOC与ZCOB的公共边,ZAOC是ZCOB的邻角;ZBOC 也是/COA的邻角(9) 补角:两个角的
11、和等于平角,这两个角叫做互为补角。也就是 说,其中任个角是另个角的补角。如图图中的/I是Z2的补角,匕2是匕1的补角,或者说,匕1与匕2互 为补角。(10) 对顶角:把一个角的两边分别向相反方向延长,这两条延长线 所夹的角,叫做原角的对顶角。如图图中的/AOD 与 ZBOCs /AOB 与 ZDOC;两对顶角是相等的。图中的ZAOD=ZBOC; ZAOB = ZDOC;。(11) 三线八角:两条直线被第三条直线所截,所得的八个角,叫做三线八角。图中的11、12、13和匕1、匕2、Z3s匕4、匕5、匕6、匕7、Z8 就是三线八角。按上述八个角的相互位置,给以下列不同名称: 同位角:当形成三线八角
12、时,如果有两个角分别在两条直线的同一 方,并且在第三条直线的同一旁,这样的一对角,叫做同位角。如图中的/I与匕5、匕2与匕6、Z4与Z8、匕3与匕7都是同位角。 内错角:如果两个角都在两直线的内侧,并且在第三条直线的两侧, 那么这样的一对角叫做内错角。图中的/6与Z6、匕4与匕5都是内错角。 外错角:如果两个角都在两直线的外侧,并且在第三条直线的两侧, 那么这样的一对角叫做外错角。图中的/I与Z8、匕2与匕7都是外错角。 同旁内角:如果有两个角都在两条直线的内侧,并且在第三条直线 的同旁,那么这样的一对角,叫做同旁内角。图中的/3与Z5、匕4与匕6都是同旁内角。 同旁外角:如果有两个角都在两条
13、直线的外侧,并且在第三条直线 的同旁,那么这样的一对角,叫做同旁外角。图中的/I与Z7、匕2与匕8都是同旁外角。284. 垂直和垂线有什么不同?垂直和垂线是两个不同的概念。垂直的含义是:两条直线相交成直角, 这两条直线叫做互相垂直。图中的直线AE.与直线CD相交于0,并且它们所成的角等于90 ,因 此,直线AB与CD互相垂直。在两条相互垂直的直线中,其中一条直线叫做另一条直线的垂线。它 们的交点叫做垂足。垂直通常用符号“丄”来表示。如图中的AB垂直于CD,可记作AB 1CD,读作AB垂直于CD。有时为了把垂足也表示岀来,也可以写作AB 丄CD于0,读作:AB垂直于CD于0点。垂线还具有以下两个
14、性质:(1) 经过一宸且只有一条直线垂直于已知直线;(2) 从直线夕、一点到这条线上的各点所连结的线段中,和这条直线 垂直的线段最短。画垂线时的要点是什么?通常画垂线所借助的工具有两种:一种是借助“三角板画垂线;另 种是借助“直尺、圆规”来画垂线。用三角板画一条直线的垂线,一般所给的条件有两种:(1)过直线夕、一点画这条直线的垂线。(2)过直线上的一点画这条直线的垂线。如图:例如:已知点P是直线AB外的一点,用三角板过P点作P0垂直于ABo如图,把三角板一条直角边靠在直线AB上(即把三角板的一条直 角边与直线AB重合),并沿AB移动,使另一条直角边靠上P点,固定住 三角板,并用铅笔沿着这另一条
15、直角边画一条直线P0,直线P0与直线AB 交于0点,这样,P就是直线AB的垂线。用一个三角板作垂线时,往往在接近垂足0点处的一段不容易作得很 好。可以釆用另一种方法,如图所示:用两个三角板,把一个三角板(如 虚线中的三角板)先固定住,然后把另一个三角板与它靠紧,再拿去第一 个三角板,固定住第二个三角板,用铅笔沿着第二个三角板的一条边(靠 上P点的一条边)画一条直线P0。这种方法的关键是第二个三角板靠P 点的一条边与直线AB相交,因此,在垂足0处,可以画得准确些。又如:已知点P是直线AB上的一点,用三角板过P点作PC垂直于直 线AB。图如图:图如图,把三角板的一条直角边靠在直线AB上,沿着AB移
16、动,使另 条直角边靠上P点(即直角顶点靠上P点)时,把三角板固定,并且用 铅笔沿这另一条直角边画一条直线PC与直线AB相交于P点,则PC是AB 的垂线。与上例相同,也可以按图所示,用两个三角板,当第一个三角板的 条直角边靠在直线AB上,沿AB移动到另一条直角边靠上P点时,固定 住三角板,把第二个三角板的一条边与它靠紧,然后拿掉第一个三角板, 用铅笔沿第二个三角板靠P点的一边画一条直线PC,则PC是AB的垂线。用直尺和圆规画一条直线的垂线时,通常有两种情况:(1) 过直线AB外的一点P作AB的垂线。(2) 过直线AB上的一点P作AB的垂线。如图:图图如图,以P为圆心,以大于P到AB的距离为半径作
17、瓠,交AB于E、F,再分别以E、F为圆心,以大于!EF为半径作弧交于D,过P、D作直线PD, PD交AB于D,则PD是AB的垂线,垂足为0。如图,以P点为圆心,以任一长为半径作弧交AB于E、F;以E、F为圆心,以大于! EF长为半径,作弧交于C点,连结CP,则CP是AB的垂线,垂足为Po285. 祎与什么关系?平行与平行线是两个不同的概念,它们之间又有着内在的联系。平行的概念是指直线与直线、直线与平面、平面与平面之间的位置关 系。当线与线、线与面、面与面平行时,其共同特点是没有公共点。但一 组直线平行,除了直线之间没有公共点之外,这组直线必定在同一个平面 上。通常用“ / ”表示平行。平行线的
18、概念是指在同一平面内,两条不相交的直线,叫做平行线。如图:直线AB与CD,无论怎样把它们向两方无限地延长岀去,这两条直线 是永远不会相交的。类似这样的两条直线,就是平行线。可记作AB / CD,读作AB平行于CDo平行线具有以下几个性质:(1) 经过直线外一点,且只有一条直线平行于这条直线。(2) 在同一平面内,如果两条直线都平行于第三条直线,那么这两 条直线平行。(3) 两条平行线被第三条直线所截,它们的同位角相等。(4) 两条平行线被第三条直线所截,它们的内错角相等。(5) 两条平行线被第三条直线所截,它们的同旁内角互补。(6) 如果一条直线和两条平行线中的一条垂直,那么它也垂直于平 行线
19、中的另一条。依据上述平行线的性质,可以对两条直线是否为平行线进行判定。286. 画平行线时的要点是什么?画平行线时,通常借助的工具是直尺和三角板。其画法的要点是:先 把三角板靠在直尺上(如下图)。把三角板顺着直尺滑动,沿着三角板的其它一边,在滑动的不同位置 上作两条直线(如图中AB和CD),这两条直线就是平行线。般情况下,需要通过直线外一点,作已知直线的平行线。其画法的 要点是:先把三角板的一条边靠在直线上(如图):三角板所靠的直线为AB,再把直尺贴在三角板的另一边上,然后再 把直尺与三角板一起沿着直线AB移动,使直尺边靠在点P上,这时,固 定住直尺,把三角板沿着直尺推到与原直线AB靠在一起的
20、一边的点P上, 最后用铅笔在这条边上画一条直线CD,这样,直线CD过P点,并且与直 线AB平行。287. 长方形、正方形、菱形都是平行四边形吗?回答这个问题,首先明确一下平行四边形的意义及其性质,才能对此 做岀肯定或否定的判定。平行四边形的意义是:平面上两组对边分别平行的四边形,叫做平行 四边形。平行四边形用符号来表示。如下图:根据平行四边形的意义,图中四边形ABCD的两组对a AB/CD; AD HBC,因此,四边形ABCD是 平行四边形。平行四边形ABCD记作QABCD。在标记平行四边形的四 个顶点时,要用大写字母依次顺序标岀。平行四边形的性质是判定平行四边形的主要依据。这些性质有:(1)
21、 对边相等。即:AB=CD, AD = BCo(2) 邻角互补。即:ZA+ZB=ZB+ZC=180。(3) 对角相等。即:ZA=ZC; ZB=ZDo(4) 对角线互相平分。即:AO=OC; BO=ODo 根据上述意义和性质,可以对问题做岀判定:长方形两组对边分别平行,符合平行四边形的意义,也具备其性质, 因此,长方形也属于平行四边形。同时,长方形的四个角都是直角。正方形本身就是特殊的长方形,除了四条边都相等外,具备了长方形 的一切特征,因此,正方形也属于平行四边形。菱形的四条边也相等,也具备了平行四边形的意义和性质,因此, 也属于平行四边形。般情况下,为了突岀本身的特征,上述三种图形分别叫它们
22、为长方 形、正方形和菱形,从实质上划分,也可以说它们都是特殊的平行四边形。288. 三角形应该如何分类?由于三角形是由不在同一直线上的三条线段所围成的封闭图形,因 此,三角形必有三条边和三个角。三角形通常用符号来表示。三角形的分类方法,一般是按“角”和“边”来划分的,角是根据内 角的大小,边是根据边的长短。按内角大小来划分,可分为三类:(1)锐角三角形:每个角都是锐角(小于90 )的三角形,叫做锐 角三角形。左图中的三角形的三个角都是锐角,所以、,是锐角三角 形。(2)直角三角形:有一个内角是直角的三角形,叫做直角三角形。 左图*AABC的内角A是直角,因此,这个三角形是直角三角形。(3)钝魚
23、三角形:有一个内角是钝角的三角形,叫做钝角三角形。 左图*AABC的内角A是钝角,因此,这个三角形是钝魚三角形。钝角三角形与说角三角形的合称,叫做斜三角形。如果按三角形的边的长短来划分,也可分为三类:B(1)不等边三角形:三条边互不相等的三角形,叫做不等边三角形。左图*aabc的三条边互不相等,所以,这个三角形是不等边三角形。(2)等边三角形:三条边都相等的三角形,叫做等边三角形。左图 中的三条边都相等,所以,这个三角形是等边三角形。(3)等腰三角形:有两条边相等的三角形,叫做等腰三角形。左图 中的的两条边是相等的,即AB=BC,所以,这个三角形是等腰三角 形。由于等边三角形ABC中,AB=B
展开阅读全文