书签 分享 收藏 举报 版权申诉 / 9
上传文档赚钱

类型空间向量与立体几何单元练习题.doc

  • 上传人(卖家):刘殿科
  • 文档编号:6102529
  • 上传时间:2023-05-29
  • 格式:DOC
  • 页数:9
  • 大小:947.50KB
  • 【下载声明】
    1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
    2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
    3. 本页资料《空间向量与立体几何单元练习题.doc》由用户(刘殿科)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
    4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
    5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
    配套讲稿:

    如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。

    特殊限制:

    部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。

    关 键  词:
    空间 向量 立体几何 单元 练习题
    资源描述:

    1、空间向量与立体几何习题一、选择题(每小题5分,共50分)1.如图,在平行六面体ABCDA1B1C1D1中,M为AC与BD的交点.若=a,=b,=c,则下列向量中与相等的向量是A.a+b+c B.a+b+cC.ab+c D.ab+c2.下列等式中,使点M与点A、B、C一定共面的是A. B.C. D.3.已知空间四边形ABCD的每条边和对角线的长都等于1,点E、F分别是AB、AD的中点,则等于A. B. C. D.4.若,与的夹角为,则的值为A.17或-1 B.-17或1 C.-1 D.15.设,则线段的中点到点的距离为A. B. C. D.6.下列几何体各自的三视图中,有且仅有两个视图相同的是正

    2、方体圆锥三棱台正四棱锥A B C D7.右图是一个几何体的三视图,根据图中数据,可得该几何体的表面积是俯视图正(主)视图侧(左)视图2322A.B.C.D.8.如图,ABCD-A1B1C1D1为正方体,下面结论错误的是A.BD平面CB1D1B.AC1BDC.AC1平面CB1D1D.异面直线AD与CB1所成的角为609.如图,在长方体ABCD-A1B1C1D1中,AB=BC=2,AA1=1,则BC1与平面BB1D1D所成角的正弦值为A. B. C. D.10.ABC的三个顶点分别是,则AC边上的高BD长为A.5 B. C.4 D.二、填空题(每小题5分,共20分)11.设,且,则 .12.已知向

    3、量,且,则=_.13.在直角坐标系中,设A(-2,3),B(3,-2),沿轴把直角坐标平面折成大小为的二面角后,这时,则的大小为 14.如图,PABCD是正四棱锥,是正方体,其中,则到平面PAD的距离为 .三、解答题(共80分)15.(本小题满分12分)如图,在四棱锥P-ABCD中,底面ABCD是边长为1的正方形,侧棱PA的长为2,且PA与AB、AD的夹角都等于600,是PC的中点,设(1)试用表示出向量;(2)求的长16.(本小题满分14分)如下的三个图中,上面的是一个长方体截去一个角所得多面体的直观图,它的正视图和侧视图在下面画出(单位:cm).(1)在正视图下面,按照画三视图的要求画出该

    4、多面体的俯视图;(2)按照给出的尺寸,求该多面体的体积;(3)在所给直观图中连结,证明:面EFG.17.(本小题满分12分)如图,在四面体中,点分别是的中点求证:(1)直线面;(2)平面面18.(本小题满分14分)如图,已知点P在正方体的对角线上,PDA=60.(1)求DP与所成角的大小;(2)求DP与平面所成角的大小.19.(本小题满分14分)已知一四棱锥PABCD的三视图如下,E是侧棱PC上的动点(1)求四棱锥PABCD的体积;(2)是否不论点E在何位置,都有BDAE?证明你的结论;(3)若点E为PC的中点,求二面角DAEB的大小20.(本小题满分14分)如图,已知四棱锥,底面为菱形,平面

    5、,分别是的中点(1)证明:;PBECDFA(2)若为上的动点,与平面所成最大角的正切值为,求二面角的余弦值练习题参考答案一、选择题1.=c+(a+b)=a+b+c,故选A.2.故选D.3.,故选B.4.B 5.B 6.D 7.D 8.D 9.D10.由于,所以,故选A二、填空题11.9 12.313.作ACx轴于C,BDx轴于D,则14.以为轴,为轴,为轴建立空间直角坐标系设平面PAD的法向量是,取得,到平面PAD的距离.三、解答题15.解:(1)是PC的中点,(2).16.解:(1)如图(2)所求多面体体积ABCDEFG(3)证明:在长方体中,连结,则因为分别为,中点,所以,从而又平面,所以

    6、面17.证明:(1)E,F分别是的中点,EF是ABD的中位线,EFAD,AD面ACD,EF面ACD,直线EF面ACD;(2)ADBD,EFAD,EFBD,CB=CD,F是的中点,CFBD又EFCF=F, BD面EFC,BD面BCD,面面.18.解:如图,以为原点,为单位长建立空间直角坐标系则,连结,在平面中,延长交于设,由已知,由,可得ABCDPxyzH解得,所以(1)因为,所以,即与所成的角为(2)平面的一个法向量是因为,所以,可得与平面所成的角为19.解:(1)由该四棱锥的三视图可知,该四棱锥PABCD的底面是边长为1的正方形,侧棱PC底面ABCD,且PC=2.(2)不论点E在何位置,都有

    7、BDAE证明如下:连结AC,ABCD是正方形,BDACPC底面ABCD 且平面BDPC又BD平面PAC不论点E在何位置,都有AE平面PAC 不论点E在何位置,都有BDAE(3)解法1:在平面DAE内过点D作DGAE于G,连结BGCD=CB,EC=EC,ED=EBAD=AB,EDAEBA,BGEA为二面角DEAB的平面角BCDE,ADBC,ADDE在RADE中=BG在DGB中,由余弦定理得=,二面角DAEB的大小为.解法2:以点C为坐标原点,CD所在的直线为轴建立空间直角坐标系如图示:则,从而设平面ADE和平面ABE的法向量分别为由法向量的性质可得:,令,则,设二面角DAEB的平面角为,则,二面

    8、角DAEB的大小为.20.(1)证明:由四边形为菱形,可得为正三角形因为为的中点,所以又,因此因为平面,平面,所以而平面,平面且,所以平面又平面,所以(2)解:设,为上任意一点,连接由(1)知平面,则为与平面所成的角在中,所以当最短时,最大,即当时,最大此时,因此又,所以,所以解法一:因为平面,平面,所以平面平面过作于,则平面,过作于,连接,则为二面角的平面角,在中,又是的中点,在中,又,在中,即所求二面角的余弦值为解法二:由(1)知两两垂直,以为坐标原点,建立如图所示的空间直角坐标系,又分别为的中点,所以PBECDFAyzx,所以设平面的一法向量为,则因此取,则,因为,所以平面,故为平面的一法向量又,所以因为二面角为锐角,所以所求二面角的余弦值为

    展开阅读全文
    提示  163文库所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
    关于本文
    本文标题:空间向量与立体几何单元练习题.doc
    链接地址:https://www.163wenku.com/p-6102529.html

    Copyright@ 2017-2037 Www.163WenKu.Com  网站版权所有  |  资源地图   
    IPC备案号:蜀ICP备2021032737号  | 川公网安备 51099002000191号


    侵权投诉QQ:3464097650  资料上传QQ:3464097650
       


    【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。

    163文库