书签 分享 收藏 举报 版权申诉 / 7
上传文档赚钱

类型第十八章-平行四边形-小结与复习(含答案).doc

  • 上传人(卖家):刘殿科
  • 文档编号:6101918
  • 上传时间:2023-05-29
  • 格式:DOC
  • 页数:7
  • 大小:559.50KB
  • 【下载声明】
    1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
    2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
    3. 本页资料《第十八章-平行四边形-小结与复习(含答案).doc》由用户(刘殿科)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
    4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
    5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
    配套讲稿:

    如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。

    特殊限制:

    部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。

    关 键  词:
    第十八 平行四边形 小结 复习 答案
    资源描述:

    1、 第十八章 平行四边形 小结与复习基础盘点 1.平行四边形是指 .它的性质有 .2.平行四边形的判断方法有:(1) ;(2) ;(3) ;(4) . 3.矩形是指 . 它的性质有 、 . 4.矩形的判定方法有 、. 5.菱形是指 . 它的性质有 、 . 6.菱形的判定方法是 、 . 7.正方形具有矩形和菱形的一切性质. 正方形的判定方法是 、 . 8.连接三角形两边中点的线段叫做三角形的 .三角形的中位线平行于 ,并且等于第三边的 .考点呈现考点一 求度数例1如图1,在ABCD中,CEAB,为垂足如果A=125,则BCE=( ) A.550 B.350 C.300 D.250 解析:本题只要求

    2、出B的度数,就可以得到BCE的度数,由已知ABCD中,A=125,知A+B=180,得B=55.进而得BCE=35.故选B.点评:本例也可以利用对边平行、对角相等来求考点二 平行四边形的性质例2 如图2,在周长为20cm的ABCD中,ABAD,AC,BD相交于点O,OEBD交AD于E,则ABE的周长为( )A.4cm B.6cm C.8cm D.10cm解析:本题要求ABE的周长,就是求AB+BE+EA的值,而题目所给的条件是ABCD的AC,BD相交于点O,可得AC、BD互相平分,即O是BD的中点,又OEBD交AD于E,可知OE是BD的垂直平分线,则有BE=DE,所以AB+BE+EA=AB+D

    3、E+EA=AB+DA=20=10(cm).故选D点评:本例利用平行四边形及线段垂直平分线的性质把所要求的三角形的周长转化为平行四边形两邻边的和,使问题得到解决.考点三 正方形的性质例3 (1)如图3,在正方形ABCD中,点E,F分别在边BC、CD上,AE,BF交于点O,AOF90.求证:BECF.(2) 如图4,在正方形ABCD中,点E,H,F,G分别在边AB,BC,CD,DA上,EF,GH交于点O,FOH90, EF4.求GH的长.(3) 已知点E,H,F,G分别在矩形ABCD的边AB,BC,CD,DA上,EF,GH交于点O,FOH90,EF4. 直接写出下列两题的答案:如图5,矩形ABCD

    4、由2个全等的正方形组成,求GH的长; 如图6,矩形ABCD由n个全等的正方形组成,求GH的长(用n的代数式表示).图4图3图5 图6 解析:(1)要证BE=CF,发现它们分别在ABE和BCF中,由已知条件可以证出ABEBCF;第(2)可以借助(1)的解法,作出辅助线,构造成(1)的形式;而(3)则是在前两问的基础对规律的总结,发现在正方形内互相垂直的两条线段相等.图7RNM (1) 因为四边形ABCD为正方形,所以AB=BC,ABC=BCD=90,所以 EAB+AEB=90.因为EOB=AOF90,所以FBC+AEB=90,所以EAB=FBC,所以ABEBCF ,所以BE=CF (2)如图7,

    5、过点A作AM/GH交BC于M,过点B作BN/EF交CD于N,AM与BN交于点R,则四边形AMHG和四边形BNFE均为平行四边形,所以 EF=BN,GH=AM, 因为FOH90, AM/GH,EF/BN,所以NRA=90,故由(1)得, ABMBCN,所以AM=BN.所以GH=EF=4 (3) 8 4n 点评:这是一道猜想题,由特殊的图形得到结论,进一步推广到在其它情况下也成立,这是今后中考常见的一个题型,需要我们认真观察、计算、猜想、推广应用.ABCDFEOABCD考点四 四边形的折叠例4 将矩形纸片ABCD按如图所示的方式折叠,得到菱形AECF.若AB=3,则BC的长为() A.1 B.2

    6、C. D.解析:由对矩形的折叠过程可知,矩形ABCD是一个特殊的矩形,否则折叠后难以得到菱形,据此,矩形的对角线等于边BC的2倍,于是,在RtABC中利用勾股定理即可求解.由题意知AC=2BC,在RtABC中,由勾股定理,得AC2=AB2+BC2,即4BC2=AB2+BC2,而AB=3,所以BC=.故应选D.点评:有关特殊四边形的折叠问题历来是中考命题的一个热点,求解时只要依据折叠的前后的图形是全等形,再结合特殊四边形的有关知识就可以解决问题.误区点拨一、平行四边形的性质用错例1如图1,在平行四边形ABCD中,下列各式:; ;.其中一定正确的是()A B C D错解:选B、C、D.剖析:平行四

    7、边形的两组对边分别平行,对角相等的性质,同时考查了平行线的,因为1与2互补,所以,因为四边形ABCD是平行四边形,所以ABDC,ADBC,2 =4,所以,.正解:选A.BACDO例2 如图2,平行四边形ABCD中,对角线AC和BD相交于O点,若AC=8,BD=6,则边长AB取值范围为( )A1AB7 B2AB14 C6AB8 D3AB14 错解:选B.剖析:本题错误原因在于没有搞清这三条边是否在同一个三角形中就用两边之和大于第三边,两边之差小于第三边来判定.在平行四边形ABCD中,两条对角线一半与平行四边形一边组成一个三角形然后再求取值范围.正解:选A.二、运用判定方法不准确例3已知,如图3,

    8、在ABCD中,E,F分别是AB,CD的中点.求证:(1)AFDCEB; (2)四边形AECF是平行四边形.错解:(1)在ABCD中,AD=CB,AB=CD,D=B.因为E,F分别是AB、CD的中点,所以,即DF=BE.在AFD和CEB中,AD=CB,D=B,DF=BE,所以 AFDCEB.(2)由(1)知,AFDCEB,所以DFA=BEC,所以AFCE,即四边形ABCD是平行四边形(一组对边平行且相等的四边形是平行四边形).剖析:本例第(1)问是正确的,错在第(2)问选择证平行四边形的方法上,我们利用“一组对边平行且相等的四边形是平行四边形”这个方法时,证明出现了错误.正解:(1)同上.(2)

    9、在ABCD中,AB=CD,ABCD,由(1)得BE=DF,所以AE=CF.所以,四边形AECF是平行四边形.例4 如图4,在四边形ABCD中,AB=DC,AD=BC,点E在BC上,点F在AD上,AF=CE,EF与对角线BD相交于点O.试说明:O是BD的中点.错解:在四边形ABCD中,AB=DC,AD=BC,所以四边形ABCD是平行四边形,又因为AF=CE,所以O是BD的中点.剖析:本例主要错在误认为O是平行四边形ABCD对角线的交点上,但我们观察图形可以发现EF与BD为四边形FBED的对角线,只要得到四边形FBED是平行四边形,就能根据平行四边形的对角线互相平分这一性质即可得到O是BD的中点.

    10、正解:连接FB,DE,因为AB=DC,AD=BC,所以四边形ABCD是平行四边形所以FDBE又因为AD=BC,AF=CE,所以FD=BE所以四边形FBED是平行四边形所以BOOD,即O是BD的中点跟踪训练1.如图1,在菱形ABCD中,对角线AC=4,BAD=120,则菱形ABCD的周长为( )A20 B18 C16 D152.如图2,点P是矩形ABCD的边AD的一个动点,矩形的两条边AB、BC的长分别为3和4,那么点P到矩形的两条对角线AC和BD的距离之和是( )A B C D不确定3.如图3,将一张正方形纸片剪成四个小正方形,得到4个小正方形,称为第一次操作;然后,将其中的一个正方形再剪成四

    11、个小正方形,共得到7个小正方形,称为第二次操作;再将其中的一个正方形再剪成四个小正方形,共得到10个小正方形,称为第三次操作;.,根据以上操作,若要得到2011个小正方形,则需要操作的次数是( ) A. 669 B. 670 C.671 D. 672 4.如图4,已知菱形ABCD的一个内角,对角线AC,BD相交于点O,点E在AB上,且,则=度 5.如图5,在正方形ABCD中,点E、F分别在BC和CD上,AE = AF(1)求证:BE = DF;(2)连接AC交EF于点O,延长OC至点M,使OM = OA,连接EM,FM判断四边形AEMF是什么特殊四边形?并证明你的结论参考答案基础盘点:略.跟踪训练:1.C 2.A 3.B 4.25 5.(1)因为四边形ABCD是正方形,所以ABAD,B = D = 90因为AE = AF,所以所以BEDF(2)四边形AEMF是菱形证明略.

    展开阅读全文
    提示  163文库所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
    关于本文
    本文标题:第十八章-平行四边形-小结与复习(含答案).doc
    链接地址:https://www.163wenku.com/p-6101918.html

    Copyright@ 2017-2037 Www.163WenKu.Com  网站版权所有  |  资源地图   
    IPC备案号:蜀ICP备2021032737号  | 川公网安备 51099002000191号


    侵权投诉QQ:3464097650  资料上传QQ:3464097650
       


    【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。

    163文库