第一章直角三角形的边角关系小结与复习.doc
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《第一章直角三角形的边角关系小结与复习.doc》由用户(刘殿科)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 第一章 直角三角形 边角 关系 小结 复习
- 资源描述:
-
1、第一章 直角三角形的边角关系一、本章知识要点: 1、锐角三角函数的概念; 2、解直角三角形。二、本章教材分析: (一).使学生正确理解和掌握三角函数的定义,才能正确理解和掌握直角三角形中边与角的相互关系,进而才能利用直角三角形的边与角的相互关系去解直角三角形,因此三角形函数定义既是本章的重点又是理解本章知识的关键,而且也是本章知识的难点。如何解决这一关键问题,教材采取了以下的教学步骤:1. 从实际中提出问题,如修建扬水站的实例,这一实例可归结为已知Rt的一个锐角和斜边求已知角的对边的问题。显然用勾股定理和直角三角形两个锐角互余中的边与边或角与角的关系无法解出了,因此需要进一步来研究直角三角形中
2、边与角的相互关系。2. 教材又采取了从特殊到一般的研究方法利用学生的旧知识,以含30、45的直角三角形为例:揭示了直角三角形中一个锐角确定为30时,那么这角的对边与斜边之比就确定比值为1:2,接着以等腰直角三角形为例,说明当一个锐角确定为45时,其对边与斜边之比就确定为,同时也说明了锐角的度数变化了,由30变为45后,其对边与斜边的比值也随之变化了,由到。这样就突出了直角三角形中边与角之间的相互关系。3. 从特殊角的例子得到的结论是否也适用于一般角度的情况呢?教材中应用了相似三角形的性质证明了:当直角三角形的一个锐角取任意一个固定值时,那么这个角的对边与斜边之比的值仍是一个固定的值,从而得出了
3、正弦函数和余弦函数的定义,同理也可得出正切、余切函数的定义。4. 在最开始给出三角函数符号时,应该把正确的读法和写法加强练习,使学生熟练掌握。同时要强调三角函数的实质是比值。防止学生产生sinX=60,sinX=等错误,要讲清sinA不是sin*A而是一个整体。如果学生产生类似的错误,应引导学生重新复习三角函数定义。5. 在总结规律的基础上,要求学生对特殊角的函数值要记准、记牢,再通过有关的练习加以巩固。在解三角形的过程中,需要会求一般锐角的三角函数值,并会由已知的三角函数值求对应的角度。为此,教材中安排介绍了查三角函数表的方法,学生在查表过程中容易出错,尤其是在查余弦、余切表时,特别是在查表
4、前,应适当讲一下锐角三角函数值的变化规律。6. 从定义总结同角三角函数关系式:在学生熟练掌握定义的基础上,师生共同来发现如下的同角三角函数关系式,培养学生分析问题、总结规律、发现问题的习惯和能力。例如:sinA=sinB= cosA=cosB= tanA= tanB=cotA= cotB=有哪些函数的值相等呢?如下:sinA=cosB A+B=90 cos(90-B)=sinBA=90-B tan(90-B)=cotBsin(90-B)=cosB cot(90-B)=tanB关于A可由学生自己推出。又有: tanAcotA= tanA= cotA= sinA= cosA= 四个三角函数的基本性
5、质:根据特殊角的三角函数值和查三角函数可以得出:正弦、正切的函数值是随着角度的增大而增大,正弦函数(在090)sin0=0, sin90=1,正切函数(在090)tan0, tan90不存在。余弦、余切的函数值是随角度的增大而减小,余弦函数(090) cos0=1,cos90=0,cos0不存在,cot90=1.为了巩固这一部分知识,应该通过一些基本练习题使学生达到熟练掌握的目的。练习题如下:填空: (1)知:+=90,sin= 则 cos=. (2) 已知:sin27=a,则cos63=_. (3) 已知:tan42=c, 则cot48=_. (4) 计算: tan48+. (5) 已知A为
展开阅读全文