最新沪科版初中数学七年级上册七年级上册第三章一元一次方程常见题型分类.doc
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《最新沪科版初中数学七年级上册七年级上册第三章一元一次方程常见题型分类.doc》由用户(刘殿科)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 最新 沪科版 初中 数学 年级 上册 第三 一元一次方程 常见 题型 分类 下载 _七年级上册(旧)_沪科版(2024)_数学_初中
- 资源描述:
-
1、一元一次方程应用题之工程问题工程问题:工程问题的基本量有:工作量、工作效率、工作时间。关系式为:工作量=工作效率工作时间。工作时间=,工作效率=。工程问题中,一般常将全部工作量看作整体1,如果完成全部工作的时间为t,则工作效率为。常见的相等关系有两种:如果以工作量作相等关系,部分工作量之和=总工作量。如果以时间作相等关系,完成同一工作的时间差=多用的时间。例题:例1一水池装有甲、乙、丙三个水管,加、乙是进水管,丙是排水管,甲单独开需10小时注满一池水,乙单独开需6小时注满一池水,丙单独开15小时放完一池水。现在三管齐开,需多少时间注满水池?例2一项工程,甲队单独做需要10天完成,乙队单独做需要
2、20天完成,两队同时工作3天后,乙队采用新技术,工作效率提高了25%,自乙队采用新技术后,两队还需要同时工作多少天才能完成这项工程?针对练习:1某中学的学生自己动手整修操场,如果让初一学生单独工作,需要75小时完成;如果让初二学生单独工作,需要5小时完成。如果让初一、初二学生一起工作1小时,再由初二学生单独完成剩余部分,共需几小时完成?2一项工程,甲单独做20天完成,乙单独做10天完成,现在由乙先独做几天后,剩下的部分由甲独做,先后共花12天完成,问乙做了几天?3整理一批图书,由一个人做要40小时完成。现计划由一部分人先做4小时,再增加2人和他们一起做8小时,完成这项工作。假设这些人的工作效率
3、相同,具体先安排多少人工作。4某车间加工30个零件,甲工人单独做,能按计划完成任务,乙工人单独做能提前一天半完成任务,已知乙工人每天比甲工人多做1个零件,问甲工人每天能做几个零件?原计划几天完成?5整理一批数据,由一个人做需80小时完成任务。现在计划由一些人先做2小时,再增加5人做8小时,完成任务这项工作的3/4。怎样安排参与整理数据的具体人数?行程问题行程问题中有三个基本量:路程、时间、速度。关系式为:路程=速度时间;速度=;时间=。可寻找的相等关系有:路程关系、时间关系、速度关系。在不同的问题中,相等关系是灵活多变的。例1、甲、乙两地相距162公里,一列慢车从甲站开出,每小时走48公里,一
4、列快车从乙站开出,每小时走60公里试问: (1)两列火车同时相向而行,多少时间可以相遇?(2)两车同时反向而行,几小时后两车相距270公里?(3)若两车相向而行,慢车先开出1小时,再用多少时间两车才能相遇?(4)若两车相向而行,快车先开25分钟,快车开了几小时与慢车相遇?(5)两车同时同向而行(快车在后面),几小时后快车可以追上慢车?(6)两车同时同向而行(慢车在后面),几小时后两车相距200公里?例2、某连队从驻地出发前往某地执行任务,行军速度是6千米/小时,18分钟后,驻地接到紧急命令,派遣通讯员小王必须在一刻钟内把命令传达到该连队,小王骑自行车以14千米/小时的速度沿同一路线追赶连队,问
5、是否能在规定时间内完成任务?针对练习:1、小明每天早上要在720之前赶到距家1000米的学校上学,一天,小明以80米/分的速度出发,5分后,小明的爸爸发现他忘了带语文书,于是,爸爸立即以180米/分的速度去追小明,并且在途中追上了他。问:(1)爸爸追上小明用了多长时间? (2)追上小明时,距离学校还有多远?2、一架飞机飞行两城之间,顺风时需要5小时30分钟,逆风时需要6小时,已知风速为每小时24公里,求两城之间的距离和无风时飞机的速度?3、甲、乙两人环绕周长是400米的跑道散步,如果两人从同一地点背道而行,那么过2分钟他们两人就要相遇。如果2人从同一地点同向而行,那么经过20分钟两人相遇。如果
6、甲的速度比乙的速度快,求两人散步的速度?4、一艘轮船航行于甲、乙两地之间,顺水时用了3小时,逆水时比顺水时多用30分钟,已知轮船在静水中每小时行26千米,求水流的速度?5、A、B两地相距80千米,一船A出发顺水行使4小时到达B,而从B出发逆水行使5小时才能到达A,求船在静水中的航行速度和水流速度。利润问题:(1)利润售价(成交价)进价(成本价)(2)利润率100%(3)商品打几折出售,就是按原标价的百分之几十出售,如商品打8折出售,即按原标价的80%出售例题:例1某商店在某一时间以每件60元的价格卖出两件衣服,其中一件盈利25,另一件亏损25,卖这两件衣服总的是盈利还是亏损,或是不盈不亏?例2
7、某种商品零售价为每件900元,为了适应市场竞争,商店决定按售价9折降价并让利48元销售,仍可获利20%,则这种商品进货价是每件多少元?针对练习:1、某商品每件的售价是192元,销售利润是60%,则该商品每件的进价多少元?2、某文具店有两个进价不同的计算器都卖64元,其中一个盈利60%,另一个亏本20%这次交易中的盈亏情况3、某商场为减少库存积压,以每件120元的价格出售两件夹克上衣,其中一件赚20%,另一件亏20%,在这次买卖中商场是盈利还是亏损,或是不盈不亏? 4、某种商品因换季准备打折出售,如果按定价的七五折出售将赔25元,而按定价的九折出售将赚20元,问这种商品的定价是多少? 5、某种品
8、牌电风扇的标价为165元,若降价以九折出售,仍可获利10%(相对于成本价),那么该商品的成本价是多少? 6、一商场把彩电按标价的九折出售,仍可获利20%,如果该彩电的进货价是2400元,那么彩电的标价是多少元?7、某商品的销售价格每件900元,为了参加市场竞争,商店按售价的九折再让利40元销售,些时仍可获利10%,此商品的进价为多少?8、如果某商品进价的降低5%,而售价不变,利润率可提高15个百分点,求此商品的原的利润率。调配问题:调配与比例问题在日常生活中十分常见,比如合理安排工人生产,按比例选取工程材料,调剂人数或货物等。调配问题中关键是要认识清楚部分量、总量以及两者之间的关系。在调配问题
9、中主要考虑“总量不变”;而在比例问题中则主要考虑总量与部分量之间的关系,或是量与量之间的比例关系。例题精讲1. 甲车队有50辆汽车,乙车队有41辆汽车,如果要使乙队汽车数比甲队汽车数的2倍还多1辆,应从甲队调多少辆到乙车队?2甲队人数是乙队人数的2倍,从甲队调12人到乙队后,甲队剩下的人数是原乙队人数的一半还多15人。求甲、乙两队原有人数各多少人?3一张方桌由一张桌面和四根桌腿做成,已知一立方米木料可做桌面50个或桌腿300根,现在5立方米木料,恰好能做桌子多少张?针对练习1甲、乙两车间各有工人若干,如果从乙车间调100人到甲车间,那么甲车间的人数是乙车间剩余人数的6倍;如果从甲车间调100人
10、到乙车间,这时两车间的人数相等,求原甲乙车间的人数。2某个小组中的男女生共15人,若女生减少3人则男生的人数是女生的人数的2倍,问这个小组男女生的人数各为多少? 3学校组织植树活动,已知在甲处植树的有27人,在乙处植树的有18人如果要使在甲处植树的人数是乙处植树人数的2倍,需要从乙队调多少人到甲队?4学校春游,如果每辆汽车坐45人,则有28人没有上车;如果每辆坐50人,则空出一辆汽车,并且有一辆车还可以坐12人,问共有多少学生,多少汽车?5甲、乙两车间各有工人64人和38人,现需从两车间调出相同数量的工人,使甲车间剩余的人数是乙车间剩余的人数的2倍还多3人,问需要从甲、乙两车间各调出多少工人?
11、一、一元一次方程应用题之数字问题数字问题:数字问题是常见的数学问题。一元一次方程应用题中的数字问题多是整数,要注意数位、数位上的数字、数值三者间的关系:任何数=(数位上的数字位权),如两位数=10a+b;三位数=100a+10b+c。在求解数字问题时要注意整体设元思想的运用。例题:例1:一个三位数,三个数位上的和是17,百位上的数比十位上的数大7,个位上的数是十位上的数的3倍。求这个数。例2:一个两位数,十位上的数字与个位上的数字之和为11,如果把十位上的数字与个位上的数字对调,那么得到的新数就比原数大63,求原的两位数。针对练习:1有一个两位数,它的十位上的数字比个位上的数字小3,十位上的数
展开阅读全文